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Abstract

The Unified Modeling Language (UML) is rapidly emerging as a de-facto standard for
modelling OO systems. Given thisrole, it isimperative that the UML have awell-
defined, fully explored semantics. Such semanticsisrequired in order to ensure that
UML concepts are precisely stated and defined. In this paper we describe and
motivate an approach to formalizing UML in which formal specification techniques
are used to gain insight into the semantics of UML notations and diagrams. We
present work carried out by the Precise UML (PUML) group on the development of a
precise semantic model for UML class diagrams. The semantic model is used as the
basisfor a set of diagrammatical transformation rules, which enable formal
deductions to be made about UML class diagrams. It is also shown how these rules
can be used to verify whether one class diagram isavalid refinement (design) of
another. Because these rules are presented at the diagrammatical level, it will be
argued that UML can be successfully used as aformal modelling tool without the
notational complexities that are commonly found in formal specification techniques.

1. Introduction

The popularity of object-oriented methods such as OMT [18] and the Fusion Method
[4], stems primarily from their use of intuitively-appealing modelling constructs, rich
structuring mechanisms, and ready availability of expertise in the form of training
courses and books. Despite their strengths, the use of OO methods on nontrivial

devel opment projects can be problematic. A significant source of problemsisthe lack
of semantics for the modelling notations used by these methods. A consequence of
thisisthat understanding of models can be more apparent than real. In some cases,
devel opers can waste considerable time resolving disputes over usage and
interpretation of notation. While informal analysis, for example, requirements and
design reviews, are possible, the lack of precise semantics for OO modelling makes it
difficult to develop rigorous, tool-based validation and verification procedures.

The Unified Modeling Language (UML) [13] isa set of OO modelling notations that
has been standardized by the Object Management Group (OMG). It isdifficult to
dispute that the UML reflects some of the best modelling experiences and that it
incorporates notations that have been proven useful in practice. Y et, the UML does
not go far enough in addressing problems that relate to the lack of precision. The
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architeds of the UML have stated that predsion d syntax and semanticsis amajor
goal. The UML semantics document (version 1.7 [12] isclamed to provide a
“complete semantics’ that isexpressed in a “predse way” using meta-modelsand a
mixture of natural language and an adaptation d formal techniques that improves
“predsion whil e maintaining readability”. The meta-models do cgpture apredse
nation d the (abstrad) syntax of the UML modelli ng techniques (thisis what meta-
models are typicdly used for), bu they dolittl e in the way of answering questions
related to the interpretation d nonttrivial UML structures. It does nat help that the
semantic meta-model is expressed in a subset of the notation that one istrying to
interpret. The meta-models can serve & predse description d the natation and are
therefore useful in implementing editors, and they can be used as abasisto define
semantics, bu they canna serve a a predse description d the meaning of UML
constructs.

The UML architedsjustify their limited use of formal techniques by claiming that
“the state of the pradicein formal spedficaions does not yet address ®me of the
more difficult language issues that UML introduces’. Our experiences with
formalizing OO concepts indicae that thisis not the cae. Whil e this may be true to
some extent, we beli eve that much can be gained by using formal techniques to
explore the semantics of UML. On the other hand, we do agreethat current text-based
formal tedhniquestendto produce modelsthat are difficult to read and interpret, and,
asaresult, can hinder understanding of UML concepts. This latter problem does not
diminish the utility of formal techniques, rather, it obli gates one to trandate formal
expressons of semanticsto aform that is digestible by users of the UML natation.

In a previous paper [8], we discusshow experiences gained by formalizing OO
concepts can significantly impaa the development of a predase semantics for UML
structures. We motivated an approacd to formalizing UML conceptsin which

formal speaficationtedniques are used primarily to gain insights tothe semantics of
UML natations. In this paper we present the roadmap we ae using to formali ze the
UML, and describe the results of its applicaion to the formali zation d UML static
models.

The primary objedive of our work isto producerigorous development techniques
based onthe UML. A first step isto make UML models amenable to rigorous
analyses by providing a predse semantics for the models. This paves the way for the
development of formal techniques suppating the rigorous development of systems
through the systematic enhancement and transformation o OO models. In this paper
we show how the formali zed static model can be rigorously manipulated to prove
properties abou them and their relationshipsto ather static models.

In sedion 2,we give an overview of work onthe formali zation & OO modelli ng
concepts and ndations, and ouline the PUML formali zation approach. In sedion 3
we present the results of our work onformalizing UML static models, and in sedion4
we show how the resulting static model diagrams can be formally manipulated.

We @oncludein sedion 5with asummary and alist of some of the open isaues that
have to be tadkled if our approachisto bea meaningful results.



2. Formalizing OO Concepts: Overview and Roadmap

Classification of Approaches

In [8] we identified three general approaches to formalizing OO modelling concepts:
supplemental, OO-extended formal notation, and methods integration approaches. In
the supplemental approach more formal statements replace parts of the informal
models that are expressed in natural language. Syntropy [5] uses this approach. In the
OO0-extended formal language approach, an existing formal notation (e.g. Z [20]) is
extended with OO features (e.g. Z++ [17] and Object-Z [ 6]). In the methods
integration approach informal OO modelling techniques are made more precise and
amenable to rigorous analysis by integrating them with a suitable formal specification
notation (e.g., see [9,2,14]).

Most method integration works involving OO methods focus on the generation of
formal specifications from less formal OO models. Thisisin contrast to the PUML
objectives, where the OO models are the precise (even formal) models. The degree of
formality of amodel is not necessarily related to its form of representation. In
particular, graphical notations can be regarded as formal if a precise semanticsis
provided for their constructs.

A formal semantics for a modelling notation can be obtained by defining a mapping
from syntactic structuresin the (informal) modelling domain to artifactsin the
formally defined semantic domain. This mapping, often called a meaning function, is
used to build interpretations of the informal models.

Rather than generate formal specifications from informal OO models and require that
devel opers manipulate these formal representations, a more workable approach isto
provide formal semantics for graphical modelling notations and develop rigorous
analysistoolsthat allow devel opers to directly manipulate the OO models they have
created. Defining meaning functions provides opportunities for exploring and gaining
insight into appropriate formal semantics for graphical modelling constructs.

The method devel opers (and not the application devel opers) should use these
mappings to justify the correctness of analysis tools and procedures provided in a
CASE tool environment.

Roadmap to For malization

Our experiences with formalizing OO modelling notations indicate that a precise and
useful semantics must be complete (i.e., meanings must be associated with each well-
formed syntactic structure), preserve the intended level of abstraction

(i.e., the elements in the semantic domain must be at the same level of abstraction as
their corresponding modelling concepts), and understandable by method devel opers.
Furthermore, the formalization of a heterogeneous set of modelling techniques
requires that the notations be integrated at the semantic level. Such integration is
required if dependencies across the modelling techniques are to be defined.

The following are the steps of the formalization approach that we use in our work on
formalizing the UML.:



1. In this step, aformal language for describing syntax and semanticsis chosen. For
the UML formalization we chose Z because it is a mature, expressive and abstract
language, that iswell supported by tools. Our experiences with using Z to formalize
OO0 conceptsindicates that it is expressive enough to characterize OO conceptsin a
direct manner (i.e., without introducing unwanted detail).

2. Inthis step, the abstract syntax of the graphical OO notation is defined. Here, we
will refer to this notation as (language) L. Language L, like conventional textual
languages, needs to have a precise syntax definition. Whereas grammars are well
suited for text, the UML meta-model [11] works well as a description of the structure
of UML diagrams. However, a Z characterization of the abstract syntax is better able
to capture constraints on the syntactic structures that can be formed using the
graphical constructs.

3. This step is concerned with characterizing the notion of a system in terms of its
constituent parts, interactions, and static and behavioral properties. The
characterization defines the elements of the semantic domain, which we denote by S.
The elements of the semantic domain correspond to modelling concepts that are
independent of particular modelling techniques. In the OO modelling realm thisis
possible because objects have certain properties that are independent from the
modelling techniques, and are thus intrinsic to “being an object”. In [16] and [19] a
system model is defined, and used as the semantic domains for OO notations in papers
such as[3] and [19]. In this paper, the semantic domain is characterized using the
language Z.

4. This step is concerned with defining the meaning function for the OO notation. A
mapping between the syntactic domain L and the semantic domain Sis defined.

The system model domain formally defines the set of all possible systems. The
semantics of amodel created using a given description technique is obtained by
applying the meaning function to its syntactic elements. The semantics of amodel is
given by a subset of the system model domain. This subset of the system model
consists of all the systems that possess the properties specified in the model.

5. In thefinal step, analysis techniques are devel oped for the formalized OO notation.
These technigues enable us to constructively enhance, refine and compose models
expressed in the language L, and also allow us to introduce verification techniques at
the diagrammatic level.

An important aspect of our formalization approach is the separation of concerns
reflected in the language-independent formulation of the semantic domain S. This
leads to a better understanding of the developed systems, alows one to understand
what a system is independently of the used notation, and allows one to add and
integrate new OO diagramming forms.

Though we speak of one language L, this language can be heterogeneously composed
of several different notations. However, it isimportant to note that integration of
these notations is more easily accomplished if the semantic domain Sis the same for
all these sub-languages.



In the following sections, we illustrate the application of this formalization approach
using asmall subset of UML class diagram notation.

3. A Formalization Example

In this section we formally define the abstract syntax of a subset of the UML static
model notation, characterize an appropriate semantic domain for its components, and
define a meaning function for the formally defined syntax.

Abstract Syntax

In the UML semantics document (version 1.1), the core package - relationships -
gives an abstract syntax for the static components of the UML. Thisis described at
the meta-level using a class diagram with additional well-formedness rules given in
OCL. For reasons given in the previous section, we use the Z notation to define the
abstract syntax. Unlike the OCL, Z provides good facilities for proof. In our work we
treat the UML semantics document as a requirements statement from which afully
formal model can be obtained.

As an example, the following schemas define some of the UML static model
constructs. Specifically, they define a set of classifiers, associations and a
generalization hierarchy, and attach a set of attributes to each classifier:
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An association end connects an association to a classifier, and has a unique name and
multiplicity:

-
‘ classifier : Classifier

Each association is connected to a number of association ends:




Well-formednessof the abstrad syntax is ensured by further constraints:

The @ove schema describes the @nstraints governing how elements of the estrac
syntax can be coombined (more constraints are possble). These mnstraints date that:

» the olledion d clasgfiersin the supertype hierarchy form adireded acgyclic
graph;
* asgciationsare unique and link a dasdgfier to another classfier (or to itself).

Semantic Domain

Semanticdly, a dassfier isrepresented as a set of objeds. Eadh instance has a unique
value, which dstinguishesit from all other objea and norobjed values:

_ Values
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to values:

At any point in time, a system can be described as a set of objeds, where eat oljea
isreferenced by it'sidentity self:



Semantic M apping

The semantic mapping determines how the syntactic elements of the UML static
model, for example, abstract, classifier, and association, are to be interpreted in the
semantic domain. The semantic mapping that takes the concepts given in the
syntactic domain AbstractSyntax to elementsin the semantic domain SM is
characterized by a Z schemathat takes the characterizations of the syntactic and
semantic domains as parameters.

_ Semantfics

The axioms state that each object is assigned to a non-abstract classifier. Furthermore,
the objects have at least the set of attributes explicitly mentioned in the classifier
definitions. We also interpret association ends as attributes and restrict the
multiplicities. Finally, the supertype relationship requires that set of objects assigned
to asubtype is a subset of the objects assigned to its supertype.

An explicit form of the meaning function can be expressed as follows:



4. Analyzing UML diagrams

Asdiscussed above, a ceantral part of the PUML grougs work isto develop aformal
version d UML that can be used to buld predse and analyzable models. However,
how can aUML model be analyzed? In the cae of atextual notation such as Z,
analysisis caried ou by constructing proofsto determine the truth or falsity of some
property being asserted about a speaficaion. Each proof involves applying a
sequence of inferencerules and axioms to the spedficaionto derive the required
conclusion. At ead step, anew formulais derived either from the original
spedficaion a asaresult of applying an inferencerule to previous formulas.

To analyze UML models, avery similar approach can be adopted [7]. However,
becaise UML isadiagrammatica modelli ng language, a set of deductive rulesfor
UML will consist of aset of diagrammatical transformation rules. Thus, proving a
property abou a UML model will i nvolve gplying a sequence of transformation rules
to the model diagrams urtil the desired conclusionisreaded. As an example,
consider a dassdiagram, which describes the relationship between a university and
its gudents. If a student can be spedalized as being either part-time or full-time, can

it be deduced (by suitable transformations) that the university has the same
relationship with afull-time student asit has with all students?

The foll owing diagrams can expressthis (obviously corred) theorem. Here the
diagram onthe right expresses the theorem to be proved:

Uhivertity [——————— | Student Uhiversity Student

Using a suitable sequence of transformation rules, we shoud be &le o transform the
original diagram into the second dagram, thereby roving that the theorem isvalid. In
this case, threesteps are required to carry out the proof, ead of which isthe result of
applying a spedfic transformationrule. The first step isto introduce anew
asciation (e.g. new) between University and Part-time & awedened version o
enlightens. The seandstep isto erase the original asociation enlightens. The proof
is completed by renaming new to enlightens.



Analysisrules off er an intuitive method d reasoning with UML models. In addition,
they have anumber of other important applicaions:

Refinement proofs: UML analysis rules can be used to prove that one model isa
refinement of ancther. Given two models (or diagrams) M' and M, then we say that M'
isarefinement of M, if M can be deduced from M". Thus, any property that holds for
the concrete model M' must also hdd for the éstrad model M (but not necessarily
the reverse). As an example, consider the diagrams shown above. Becaise we can
show that the second dagram D' is a deduction from the first diagram D, then it must
also betrue that the first diagram is a refinement of the seocond dagram. This
conclusion seams to match ou intuitive notion d refinement as a processof
strengthening assumptions made ddou amodel. In this case, we have dhosen to
strengthen the relationship between the University and its gudents by choasing to
require that all students must be enlightened, rather than just full-time students!

Please note, deductionisatechnique to derive properties that are drealy given more
or lessimplicitly within amodel. Instead, refinement focuses on adding new
properties of to amodel, thus enhancing it. These two techniques are the exad
oppaite and therefore, deduction rules applied in the oppaite diredionlea to
refinement rules.

Design pattern verification: afurther use for the analysis rules might be in the
verificaion d design patterns[10]. A design petternisjust an example of a
transformation ona static or dynamic model, which is refinement preserving.
However, at present, most design patterns are not proven corred, and are therefore
open to misuse and incorred definition. Analysis rules, in combination with a sound
semantic base, are ameans by which this problem can be overcome.

Whenever atransformationrule is applied to adiagram it must be shown that the
resulting diagram isavalid deduction d the original diagram. The cndtion uncer
which thisistrue is known as the satisfaction condtion. This gatesthat if every
meaning satisfying one model also satisfies anather model, then whatever property
holdsfor the first model must also hdd for the second. Thus, the second dagram
follows from (or isalogicd deduction d) the first diagram. Of course, for this result
to be valid, bah models must be well formed.

This condtion can be expressed in Z asfoll ows: Let us assume, thereisa
transformationrule T given. Thisisformally represented as a modification onthe
syntax, in this case astatic model:
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Such atransformation, can, for example, be the aldition o a new classfier, the
spedalization o a multiplicity, or the join of several static models. This g/ntadic
transformation reeds a semantic courterpart, which relates elements of the semantic
domain. Thisis known asthe satisfadionrelation, and it has the general form:

= (M) & IB(SAS
. (S]] £

=

_E_ { SAL)
LS I



The satisfaction relation forms the basis for unambiguously defining the conditions
under which a diagram can be considered to satisfy the properties of another diagram.
Defining suitable satisfaction conditions for this relation will be an essential step
towards our aim of developing rigorous analysis methods for UML. For example, one
possible satisfaction relation might permit both introduction and deletion of classes as
a deductive step, whilst another might only permit classintroduction®.

Finally, the formal proof of correctness of atransformation can now be described
within Z (and therefore can be proven within Z). A transformation T is correct, if

o
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This strongly corresponds to the commuting diagram, first stated in [19] and alsoin
[15].

5. Summary and Open Issues

In this paper we outlined and illustrated an approach to formalizing the UML.

The objective of our effortsisto make the UML itself a precise modelling notation so
that it can be used as the basis for a rigorous software development method. However,
it must first be determined how such aformalization can best be carried out, and what
practical purpose it can serve. This paper aims to contribute to this ongoing
discussion.

The benefits of formalization can be summarized as follows:

* Lead to adeeper understanding of OO concepts, which in turn can lead to more
mature use of technologies.

* The UML models become amenable to rigorous analysis. For example, rigorous
consistency checks within and across models can be supported.

* Rigorous refinement techniques can be devel oped.

An interesting avenue to explore is the impact aformalized UML can have on OO
design patterns and on the devel opment of rigorous domain-specific software
development notations. Domain-specific UML patterns can be used to bring UML
notations closer to auser' sreal-world constructs. Such patterns can ease the task of
creating, reading, and analyzing models of software requirements and designs.

An integrated approach to formalization of UML modelsis needed in order to provide
apractical means of analyzing these models. Current work on compositional
semantics [1] has used techniques for theory composition to combine semantic
interpretations of different parts of an OO model set.

® At present we are investigating a number of different satisfaction relations for UML diagramsin order
to determine which best fits emerging practice.



Some of the other isales that have to be addressed in ou work foll ows:

* How does one gauge the gppropriatenessof an interpretation d UML constructs?
In pradice an "acceted’ interpretationis obtained by consensus within agroup d
experts. Formal interpretations can fadlit ate such a processby providing clea,
predse statements of meaning.

* Shoudasingle formal notation be used to expressthe semanticsfor all the
models? The advantage of asingle natationisthat it provides a base for chedking
consistency acossmodels, and for refinement of the models. Thisis necessary if
analysis and refinement isdore & the level of the formal notation. On the other
hand, if the role of the formal notationisto explore the semantic posshiliti es for
the notations, and analysis and refinement are caried ou at the UML level, then
there seansto be no reed to use asingle formal naotation.

It is anticipated that as our work progresses additional isaues that will have to be
tackled will surface
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