TUM

INSTITUT FURINFORMATIK

Component Interface Diagrams: Putting
Components to Work

Franz Huber, Andreas Rausch, Bernhard Rumpe

SN

\T' a2 ©; ". .. ... O ..“"
D5 e || ERX) (52
// 2 Fe e eSO, )
AL e gl
En
” N A= N\ W
a = % b5 R

TUM | 9831
Dezenber 98

TECHNISCHE UNIVERSITAT MUNCHEN



TUM-INFO-12-19831-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1998

Druck: Institut fiir Informatik der
Technischen Universitat Munchen



Component Interface Diagrams:
Putting Components to Work*

Franz Huber, Andreas Rausch, Bernhard Rumpe
email: {huberf,rausch,rumpe}@informatik.tu-muenchen.de

Technische Universitat Munchen
Arcisstr. 21, D-80290 Miinchen, Germany
Contact: Andreas Rausch
Tel: 49-89-289-28362, Fax: -28183

In this paper, we present Component Interface Diagrams as a notation
to describe service access points (interfaces) of components, their structure,
and their navigability. We give guidelines that allow to map the component
model presented here to different technologies, like ActiveX, CORBA, and
Java Beans. The framework Frisco OEF, implemented in Java, illustrates
the proposed component concept and proves its usefulness.

Keywords: Component Interface Diagrams, ActiveX, CORBA, Java Beans.

1 Introduction

The goals of ComponentWare are very similar to those of object-orientation. Software
should be reusable in a convenient way, leading to various customization and configu-
ration mechanisms. Also, implementation details should be hidden from the client as
much as possible.

ComponentWare takes an even larger leap toward reusability, as components aim at
a granularity much larger than single objects do. However, today the question what
component concepts are, is still under investigation. This paper aims at clarifying the
concept of components and demonstrates these ideas applied in the well structured
framework FRISCO that was built using our component concept. The quality of that
framework is considerably improved by the notion of components that we introduced.

To reuse as much as possible from already existing abstraction and encapsulation
concepts, we build the component concept as an extension to object-orientation in Sec-
tion 2. The notation of Component Interface Diagrams is introduced and applied to the

* This paper is joint work of the the project SYSLAB (supported by the DFG under the Leibniz
Program, and by Siemens-Nixdorf), and the project “A1 Methods for Component-Based Software En-
gineering”, supported by Siemens ZT, a part of “Bayerischer Forschungsverbund Software-Engineering
(FORSOFT)”.



Frisco framework in Section 3. Finally, in Section 4 we discuss a mapping of our com-
ponent concept to different object technologies, like ActiveX [Cha96], CORBA [OHE96]
and Java Beans [Mic97].

1.1 A Brief Introduction into Frisco OEF

FRrisco is a document-oriented software engineering tool prototype. It is based on
a subset of UML notations [Gro97] but incorporates precisely defined refinement and
transformation rules. FRISCO provides a variety of editors combining graphical and
textual parts as well as tables within a single document. An example of a FRISCO editor
is given in Figure 1.

To achieve flexibility we developed the OEF (Open Editor Framework) as an open
approach of nesting document parts into one compound document. The developed frame-
work provides a standardized set of protocols for embedding documents. To structure
these protocols, our notion of component interfaces is used.

For each document element, a specific kind of editor, called PartHandler, exists. Each
PartHandler component consists of a possibly large set of internal objects implementing
its functionality. A subset of these objects provides the protocol interface necessary for
embedding it into the enclosing document frame. The interface objects hide the internal
object structure of a PartHandler. They are the only way of communication with the
environment. This framework, which has deliberate similarities to OPENDOC [App96],
is implemented in Java, and the PartHandlers are realized as Java Beans.

2 A Model for Object-Oriented and Component-Based
Systems

In this section we define an abstract model for object-oriented systems and extend this
model to a component-based one, introducing the concepts of components and their
structure. The model is used to clarify our notion of components and to give the notation
proposed in Section 3 a semantics.

As a basic assumption, we regard an object to be an instance of a class. In a similar
way we use the terms component instances and component types to refer to instances
and to property descriptions that makes up components, respectively.

2.1 Properties of a Component-Based Model

The concept of components is built on top of object-oriented concepts, thus allowing to
reuse them for components.

We do not enforce every entity of the system to be a component, but allow indepen-
dent objects to live between components, just like global variables live between objects.
Thus developers are free to choose what they want to be a component. Components
may interact directly, but may also be glued together using independent objects.

Furthermore, the component concept must fit into the type system of the underlying
language, such as in Java [GJS96]. As components are intended to be reused across



D'm- Et: Sm':'hon Parts  Help
EENEFPREREEREE
1. General Remarks (modified)

This document covers the static structure of the classes related

to hank aczounto. Cuotomcro arc partitioned into sorporatc and

private ones.

2. Class Diagram (new)

! ===

n i

1 | owner

Customer

T Ty

PrivateCustomear Corporate Customer|

3. Class Descriptions (new)

Account int accountMo int getAccountNol)
float balance wold esetdccountNol{int)
float g=tBalance()
volid deposit{float)
wold withdraw (float]

<abatract> int custNo int getCustNo()

Addrese custhddress wold eetCustHolint)

Addrese getCustiddress ()
vold eetfustiddress{iddress)

PrivateCustomer String Hame String getCustName|)
wold eetCustName (String]

Figure 1: A Sample Screenshot of a Compound Document Editor in Frisco

language boundaries, there should be a mapping of the component infrastructure into
several type systems as, e.g., found in CORBA.
Components exhibit a characteristics similar to objects.



e Their instances can be dynamically created,

e they have a clearly defined interface, and

e they have a well structured state.

Beyond objects, they exhibit some additional features. A component has
e hierarchically structured interfaces,

e hierarchically structured states, and

e state and interface structure may change dynamically.

2.2 A Model for Object-Oriented Systems

In this section we present in an idealized and simplified form a model for an object-
oriented system. Introducing it in a top-down way, we start with the definition for
an object-oriented system and end with attributes, methods, and basic types, leaving
out irrelevant details. Please note that this model for object-oriented systems is not
complete, but sufficient for our purposes. It is defined in a way such that it fits different
object-oriented languages.

Definition 1 Object Structure
An Object Structure (Obj, ~) is given by

e a set of objects Obj C OBJ, and
e a relation ~»: Obj — Obj, which denotes existing links between these objects.

In general obj; ~~ 0bjs describes the existence of an unidirectional link from object 0bj;
to object 0bjs.

An object structure contains a set of objects Obj and links between them. These
links are an abstraction and do not represent which attribute, parameter, or local vari-
able is responsible, neither are multiple links represented. As links are unidirectional
they describe accessibility. Since object-oriented systems change over time, an object
structure describes a snapshot of a system.

The object structure need not be closed or complete. An object structure may contain
a subset of existing objects and a subset of links. Therefore several object structures
can describe different abstractions from an object-oriented system.

Definition 2 Object
An Object (id, cl,Val) € OBJ can be represented by

e a unique identifier id for the object,

e the object’s class ¢l € CLASS, and



e the valuation Val € VAL for the attributes, local variables, parameters etc.

An object system contains a set of objects that may change over time, as objects
are created or deleted. The valuations can be used to determine the linkage ~~ of the
object structure. This definition of objects imposes several requirements, e.g., an object
structure may not contain more than one object with the same identifier.

Definition 3 Class
A Class (name, Meth, Attr) € CLLASS is characterized by

e a unique name for the class,
e a set Meth of public accessible methods, and

e a set Attr of private accessible attributes.

In addition <: CILASS x CLASS is the inheritance relation for classes.

A class has a unique name, a set of public methods, and a set of private attributes.
Public attributes can be simulated by methods. Private methods are used in program-
ming languages to avoid re-writing code in several public methods. Hence there is no
need for private methods or public attributes in our model.

With VAL the set of valuations for attributes and parameters are denoted. They are
in essence mappings of variable names (attributes etc.) to values of appropriate type,
characterizing the state of objects.

We do not elaborate on the underlying type system here, but assume an appropriate
one to be given. In addition, to add a precise characterization of behavioral concepts, a
mapping of the above given definitions into a system model as given in [KRB96] using
state machines as behavioral entities [PR97, GKRB96] could be defined.

2.3 A Model for Component-Based Systems

Our model for a component-based system is introduced on top of the model for object-
oriented systems.

Definition 4 Component
A Component (name,os, pr, If, Int) is given by

e a unique name for the component,

e an underlying object structure os = (Obj, ~),

the principal object pr € If of the component,

a set of interface objects If C Obj, and

a set of internal objects Int = Obj\If.



A component denotes a snapshot of an object structure os, characterizing the internal
structure, linkage etc. os contains a set of internal objects Int and a set of interface
objects If that are referenced from the environment.

The lifecycle of the component instance is exactly the lifecycle of the the principal ob-
ject pr. Other components and objects can access a component via the principal object.
From the principal object they can receive links to other interfaces of the component.
This way, a complex interface structure to the component can be obtained.

Once a reference of an internal object given to the environment, this object is no
longer internal, but belongs to the interface of the component. Thus, the interface of the
component is dynamically changing. The set of interface objects If denotes an snapshot
of the component interface.

A Component-Based System is now characterized by a set of components, and an
underlying object structure. Each component’s internal object structure is a subset
from that global object structure and objects internal to a component are not referenced
from outside.

Definition 5 Component-Based System
A Component-Based System (Cp,o0s) is characterized by

e a set of components C'p C COMP, and
e an underlying object structure os € OS.
We impose several requirements for meaningful component-based systems:

e Each component ¢ € Cp has an internal object structure os. that is an abstraction
from the underlying object structure: os. C o0s.

e Objects internal to a component are not referenced from outside.

Our experiences show that, in many cases, it is not necessary to use concepts of object
migration between components. Since component-based systems usually have a rather
static structure, it is sufficient to allow objects that have been internal to a component
to “emerge” to the interface, thus allowing their access from outside. In general, it is
not necessary for components to be tightly connected.

Objects that are created within a component belong to this component during their
lifetime. We assume that objects are not explicitly destroyed but garbage collected which
allows us to disregard dangling references and related problems.

3 Describing Components

So far, we have focused on providing a model for components. Now we introduce no-
tations for describing them. As the UML [Gro97] provides a rich set of techniques for
describing different views, we use and adapt these techniques for our purposes. Espe-
cially useful for describing components are the following notations:



Interaction Diagrams describe interactions either between objects in a component, or
between components.

State Machines and hierarchical StateCharts [Har88] characterize the behavior of single
objects within a component, but also of an abstraction of the entire component’s
behavior.

Interface and Class Declarations describe the methods and attributes, together with
their types and access rights.

Class Diagrams are used to describe the possible structure of a system or a component.

Object (Structure) Diagrams define the static part of the internal structure of a com-
ponent.

Our experiences show that a larger subset of the objects within a component has the
same lifecycle as the principal object and does not change its linkage. Thus, the internal
structure of a component is rather static and can be described by an Object Diagram.

Beyond the given UML notations, we propose an adapted version of Class Diagrams
— the Component Interface Diagrams — that allows us to cope with the extended capa-
bilities of component interfaces.

3.1 FRrisco OEF Interfaces

In Frisco OEF several kinds of components are used. We now introduce and briefly
describe a subset of the interfaces that PartHandler components provides, as Figure 2
illustrates.

BasicPartHandler is the principal interface that every PartHandler must provide. It
covers rudimentary content and embedding functionality and allows to access ad-
ditional interfaces of a PartHandler. To allow the enclosing document frame access
to part information relevant for embedding, a number of methods are available to
obtain information about content and size. Please note that this interface does not
provide services for editing documents, since it is desirable that certain document
parts should be displayed read-only.

Edit interfaces can be obtained invoking the getEdit method. This interface is provided
only if the part is editable. It basically provides the services to externalize (save)
its content and to activate and deactivate editing capabilities.

Toolbar interfaces allow access to the PartHandler’s toolbar. Two toolbars are allowed
(one attached to the part, the other to the frame).

Undo allows a PartHandler to participate in the OEF Undo/Redo mechanism. After
an ActionListener registers at the component, it receives a UndoableAction each
time a change occurs.



Connection allows to access the interconnections between PartHandlers in the com-
pound document, e.g., to propagate changes in order to ensure consistency between
parts.

3.2 Motivation of Component Interface Diagrams

At the beginning of the lifetime of a component, the principal object (in FRISCO an
instance of BasicPartHandler) is the only object that is accessible from the environment.
Thus the interface of the component is initially given by the principal object. Over time,
this may change. More objects may be created inside the component, and a reference to
them may be given to the environment, leading to a dynamic extension of the component
interface (see Section 2.3). This provides an important component property: being able
to provide additional interfaces during runtime if required. The purpose of a Component
Interface Diagram (CID) is to give clients a concise knowledge of the possible set of
interfaces they may use.

Due to the requirement of strong typing, these interfaces may be created during
runtime, but their type must be known initially. A CID gives information about the
externally visible interfaces, their inheritance relations, and navigation paths between
these interfaces. Furthermore, methods and multiplicities of these interfaces are shown.

CIDs are adapted from UML Class Diagrams. Figure 2 shows an extended CID for
the PartHandler component. Let us forget about the arrows’ labels for the moment and
talk about the simple variant first.

PartHandler
«principal» 1 1..2
Basi cPart Handl er $2->caller > Menu
+setDocumentServices()
+...0 .
+getMenus() &
+getConnection() e $1->caller » Connection
+getEdit(GUIFrame g)e
$1->caller
$0..1->¢g
A 4
1 1..n
A 4 Undo Undoabl eAct i on
0..1
Bdit +undo(UndoableAction a) +getUndo() @
$1->caller | +redo(UndoableAction a)
+getUndo() @ » +addActionListener(a) e *1->a

Figure 2: A Frisco Component Interface Diagram

Disregarding labels, a CID contains externally visible classes, their inheritance rela-
tions, visible methods, and, in addition, multiplicities of possible instances. The multi-



plicity determines the maximum allowed set of interfaces during runtime. In addition,
navigation paths are introduced as a concept to indicate the possible paths where to
navigate from one interface to another. Such navigation is usually done by calling an
appropriate method, which results in a reference to a new interface (see Section 3.4).
Please note that these navigation paths are not associations, although an association
might be the component’s internal way to implement navigation.

The PartHandler in Figure 2 offers six externally visible interfaces, among them
the principal interface marked with the appropriate stereotype. It also shows, what
navigation paths between interfaces are possible, but not how navigation is done. Tt
tells us, e.g., that from the Edit interface, the Undo interface can be obtained, and each
component provides one or two menus (one is context-dependent, the other is optional).

The most important capability of components is the possibility to provide an entire
set of individual and standard interfaces. Therefore, a classification of interfaces is a
point of interest following two main goals:

e Separation of concerns for the component developer ending up with a more modular
implementation than one monolithic interface could provide.

e Clearly separate individual and standard interfaces to give component users a more
natural way of understanding the different purposes of the entire component.

The designer of a CID should structure the interfaces with respect to some method-
ical guidelines. This could be expressed in UML stereotypes for standard interfaces.
For example, special interfaces for storage, printing, the undo/redo-mechanism, secu-
rity, configuration, online help, testing and debugging are often useful. These standard
interfaces are especially needed for component-based systems supporting plug-in of com-
ponents, like, for instance, editors with exchangeable spell checkers.

The proposed CIDs give a first flavor of the interfaces of a component, but their
expressiveness is limited. Therefore, we have enhanced CIDs to allow, e.g., to describe
which methods are used to obtain new interfaces. However, this makes CIDs more
complex, and it is therefore useful to work with both variants.

We introduce a transition labeling to describe how new interfaces can be obtained,
whether we iteratively receive the same interface, or a new one for each request.

For example, calling getMenus on the principal interface returns one or two menu
interfaces to the caller ($1..2->caller). Iterative calls result in the same interface for
all callers (indicated by “$”). To indicate the creation of a new interface “$” is replaced
by “*” (see method addActionListener).

A call of getEdit does not return an interface to the caller but to the method’s
parameter ($1->g) via another call. Please note, that such a “call back” need not take
place immediately, but can be delayed (e.g. done by another thread). Furthermore,
repeated “call backs” are allowed, as it is in the Undo interface, that allows to register
UndoActionListeners (method addActionListener) that will receive a reference to an
UndoableAction each time an undoable change occurs.



3.3 Precise Definition of Component Interface Diagrams

We now give a precise characterization of CIDs (the set of labels (Lab) used here is
defined below):

Definition 6 Component Interface Diagram (CID)
A Component Interface Diagram (Ifc, C, p,—, p) consists of a

e a set of interfaces Ifc € CILASS,

an inheritance relation C: Ifc X Ifc

a multiplicity mapping, p : Ifc — (Multiplicity), and

a labeled navigation relation —C Ifc x (Lab) x Ifc.

!
By ifi—ifs we denote that there is a label [ € (Lab) in interface type if; € Ifc that
allows clients to obtain an instance of interface ifs € Ifc from this component, and the
label tells how.

Definition 7 Labeling of a CID
The labels (Lab) of a CID are given by the following grammar:

by :: METH | (| { (Param) | 7 }* (Details)
Details) := [(Modifier)] [(Multiplicity)] [ [->] (Receiver)]

(La
(
(Modifier) ::= |
(
(

h

Multiplicity) = [ N3] {N | [n]}
Receiver) == VAR |

Whenever a modifier, multiplicity or receiver is missing, no constraint is assumed.
Please note, that in the diagram the MIETH-part of the label is attached to the source
node, as this denotes the interface, where the method belongs to. Some straightforward
context conditions apply and some combinations are useless, e.g., the multiplicity of the
interface itself must at least equal the multiplicity of the labels of incomming arrows.

CIDs specify, which references to its objects a component can give to the environment.
A careful flow analysis, as done for other purposes already in Java compilers, could proof
correctness of the component implementation.

There are basic objects, such as Java Strings, that are publicly available (see Section
2.1). It is useful to exclude such basic classes from the component concept, but to let
them float through component borders freely, regardless, where they have been created.
However, such exclusion has to be done carefully, being aware of implicit communica-
tion via shared objects which could lead to a behavior that is not derivable through
observation of component interfaces.

Given the technique of Component Interface Diagrams and the already mentioned
notations of UML, we can define different views of components. With CIDs, we can

10



define the Black-Boz View of components. Class Diagrams are useful to specify the
internal structure of a component, the so called Glass-Boz View. With object diagrams
we can specify run-time behavior of components as a object structure snapshot. The
connection between these views is shown in Figure 3. Note that an interface in the CID
can be implemented through several classes in the class diagram as well as an class can
implement several interfaces.

T
doye={$1- 3
o\% wm(“”ﬂbam“
5
Clion

Figure 3: A Mapping between the Glass-Box and Black-Box View

As Figure 3 indicates, the semantics of a CID can be given as a mapping of the CID
into an embedding Class Diagram, where all component interfaces map to classes, the
inheritance relation and the multiplicities are preserved, and the navigation relation is
mapped to method calls accordingly.

3.4 Guidelines to Map Components to Objects

Based on our experiences, we suggest the following guidelines for a mapping. In general
there are three kinds of possibilities to implement navigation between interfaces.

We have focused on the preferable method call. But it is also possible to use public
readable attributes for interface access if they are available, or a dynamic cast of a given
interface into another interface. The latter is, e.g., possible in Java, where failed casts
can be caught by an exception.

Component interface types are mapped either into Java classes or Java interfaces.
The former has the disadvantage that classes are not abstract and thus can be instanti-

11



ated from the environment, the latter cannot be used if attributes are publicly available
in the interface. As we prefer methods for navigation, we suggest to use Java interfaces
to implement CID interfaces.

When the desired multiplicity of an interface is 1 or a link has modifier $, then
the interface needs to be stored after creation to be repeatedly exported. Its creation
can either be done when the component is created, or in a lazy manner, upon the first
request. Anyhow, these interfaces should be implemented following the singleton pattern
[GHJV94].

If multiplicity is restricted, at least the number of already created interfaces needs to
be stored. A proper reaction for too many requests is necessary: either returning nil or
throwing an exception. The standard for too many requests is the latter one, the former
one should be used to cope with optional interfaces.

The creation of a component goes along with the creation of its principal object. For
that purpose, the creator must know the actual class of the principal. It is a good design
principle to use equal names for the component and the pricipal class. Furthermore,
there should be a global name service or an object factory (see [GHJV94] for clients to
instantiate components).

Similar to aggregation of objects, we conceptually allow the hierarchical composition
of components. However, our experiences show, that in practice, components will not
be deeply nested. The composition of components is done by creating and using a
component within another one.

4 Mapping the Component Model to Component
Infrastractures

Today, three main component infrastructures are in practical use: Microsoft’s ActiveX,
based on OLE and DCOM [Cha96], several CORBA implementations [OHE96], and
SUN’s Java Beans [Mic97]. Since it is difficult to estimate at this time which technology
will dominate in the future we subsequently characterize a mapping of CIDs in all three
technologies.

For each technology, we discuss possible implementations of the component-based
system shown in Figure 4. This system presents an abstraction of two FRISCO com-
ponents: The PartHandler (see Section 3.3, Figure 2) and a new component, the Doc-
Manager. The purpose of the DocManager is to observe its PartHandlers and propagate
changes to related PartHandlers. If the method register AtPartHandler is called the Doc-
Manager receives a pointer to the Connection interface (getConnection) and registers
itself (registerDocManager). Afterwards, if a user edits any diagram, the corresponding
editor component (PartHandler) notifies the DocManager, which then ensures that all
other affected PartHandlers are informed of the change, eventually disallowing it, if it
leads to inconsistent documents.

As all three technologies support a composition concept and provide an interface
definition language — MS-IDL, IDL, and Java Interfaces —, a CASE tool supporting CIDs
or similar description techniques could generate interface definitions for each technology.

12



PartHandler

«princi pal » DOCManager
Basi cPart Handl er
— «princi pal »
get Connecti on() DocManager
+regi ster At Edi tor ()
$1->cal I er +not i f yChanges()
1..1

Connecti on

+r egi st er DocManager ()

Figure 4: Interacting OEF Components

Hence, a mapping from our component based model to these technologies is basically
possible.

4.1 ActiveX, OLE and DCOM

ActiveX controls, formerly known as OLE or OCX controls, are DCOM objects support-
ing a couple of standard interfaces. Minimally, OLE controls support two interfaces: One
to search for additional interfaces, called IUnknown, the second to create new OLE con-
trols, called IClassFactory. An ActiveX control supports several additional interfaces
including initialization security, scripting security, run-time licensing, and digital certi-
fication [Cha96]. Moreover, DCOM offers additional standard interfaces, which can be
implemented by DCOM objects, e.g., persistence interfaces, transaction interfaces, or
drag & drop interfaces.

DCOM specifies a way of accessing objects via interfaces. Each DCOM object must
provide at least the IUnknown interface, which allows clients to query and get access to
other interfaces of the DCOM object. CID components are directly mapped to DCOM
objects, whereas the DCOM object provides a DCOM interface for each CID interface.
We also suggest to implement the CID navigation methods within the corresponding
DCOM interfaces. Otherwise, DCOM’s query interface mechanism must be used, thus
sacrificing static type checking.

DCOM interfaces do not offer a concept for subtyping. Therefore, the subtyping
mechanism for interfaces should not be used in CIDs if the target is DCOM.

In DCOM interface (types) have a unique identifier, but objects do not. To close
this gap, DCOM introduces Monikers which allow to map DCOM objects to names.
However, Monikers are insufficient for our purpose, as they are a crude way to establish
connections between components (cf. [OH97]). Hence, we suggest to implement an own
name service on top of DCOM or use standardized implementations, as, e.g., provided
in CORBA.

13



To implement the example given in Figure 4 using DCOM each component is mapped
into a DCOM object. Besides the standard DCOM interfaces IUnknown and IClassFac-
tory each DCOM object has to provide its specific DCOM interfaces (BasicPartHandler,
Connection, and DocManager). Clients can create the components by creating the prin-
cipal DCOM interface via the class factory supported by DCOM.

4.2 CORBA

An ORB is a software bus: It allows objects to transparently request other objects,
even if the target objects reside on ORBs of different vendors. Besides the distributed
and language-independent, transparent access to objects, ORBs may offer a rich set of
enhanced services. For instance, standard interfaces are specified for object and interface
browsing, dynamic method invocation, object persistence, transaction management, or
GUI services, which makes CORBA especially suited for our component concept.

CORBA interfaces are described using CORBA’s Interface Description Language
(IDL). A CORBA interface allows multiple inheritance, but a CORBA object cannot
implement more than one interface. Instead, CORBA offers a module concept where
interfaces can be grouped together into a specifc namespace, given by the surrounding
module. CID components can have several interfaces. Hence a CID component has to
be mapped to a CORBA module including all CID interfaces and navigation methods.
In CORBA, CID components are thus reduced to simple name spaces.

Since CORBA provides a global name service, links between components and objects
can be implemented in a straightforward fashion.

Mapping the example in Figure 4 to CORBA means to write two IDL modules—one
for each component—including the corresponding IDL interfaces BasicPartHandler, Con-
nection, and DocManager. After implementing the interfaces the two principal CORBA
objects have to be registered at the CORBA name service, thus clients can access the
components.

4.3 Java Beans

According to its creators from JavaSoft ” A Java Bean is a reusable software component
that can be manipulated visually in a builder tool” [Mic97, JT98]. This covers a wide
range of different possiblities. The scope of functionality reaches from simple GUI parts,
like buttons, up to full-featured database access adaptors.

In technical terms, a bean is a Java object. The specific characteristics of beans are:

A Public Interface offers Properties, Methods, and Events for clients to access the bean.

Introspection allows a builder tool to explore the bean’s interfaces and present it to
programmers. For that purpose, the Java Reflection Technique is used.

Customization allows developers to change the properties of beans during design-time.

Persistence is used to store the bean’s state permanently and restore it later.

14



Beans can support additional features, such as, e.g., security, drag & drop, or remote
invocation. To support several of these features, beans have to obey some conventions.

As beans are just Java objects, beans can implement several Java interfaces. This
fits directly into our component concept, as we also allow several interfaces for each
component and inheritance between interfaces. Beans also support single inheritance,
which is not yet used for components in our model.

Beans are packaged in so-called JAR files that include, among code and other re-
sources, optionally serialized bean instances. As the standard Java name service is a
crude circumvention to establish links between bean instances in different JAR files, it
is again necessary to define an own name service, or to use the new Java Naming and
Directory Interface [Jav98], or even to use a bean-conformant infrastructure supporting
a global name service, like, e.g., IBM’s ComponentBroker [IBM98].

In our example, each CID interface is mapped into a Java interface. Two Java Beans—
one for each component—must be realized. They should be registered at the global name
service to allow clients access to them, particularly to enable other components to obtain
links to them.

5 Conclusion

The proposed concept of components was defined as a result of designing and implement-
ing the Frisco framework for document editing. The high quality of FR1SCO shows the
suitability of the component concept. Although several extensions are imaginable, e.g.,
allowing object migration or defining a notion of inheritance on components (not only
its interfaces), we expect the given notion of components to be sufficient for a large class
of applications.

We feel that it is more important that language and tool support allow to conve-
niently define component types and automatically translate them into object-oriented
implementations. This would considerably boost component technology.

6 Biographies

Franz Huber has been working in the area of software engineering tools since 1995. He
is heading a project developing a tool for component-based development of distributed
and embedded systems which combines the usage of informal and formal techniques.
Additional research areas include object-oriented system modeling and development as
well as methodical aspects of software and systems engineering.

Andreas Rausch is working on a research project aiming to develop methods for
component-based software engineering. He has been heading in several industrial projects
developing distributed information systems. Additional research areas include software
architecture, distributed and component based systems, object-oriented modeling and
development, and methodical aspects of software engineering.

Dr. Bernhard Rumpe is heading a research project aiming to narrow the gap between
formal methods and practical modeling techniques. He has developed an approach in-

15



cluding precise guidelines for refinement and composition of diagrams on a graphical
basis, contributed to several papers about benefits and ways to formalize UML, and
co-organizes workshops about similar themes e.g. at ICSE, ECOOP and OOPSLA.

References

[App96]

[Cha96]
[GHIV94]

[GJS96]

[GKRBY6]

[Gro97]

[Har88]

[IBMYS]
[Jav98]

[JT98]

[KRBY6]

[Mic97]
[OHY7]

[OHE96]

[PRO7]

Apple Computer Inc.  OpenDoc Programmer’s Guide for the MacOS.
Addison-Wesley, 1996.

D. Chappell. Understanding ActiveX and OLE. Microsoft Press, 1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1994.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

R. Grosu, C. Klein, B. Rumpe, and M. Broy. State Transition Diagarams.
Technical Report TUM-19630, Technische Universitat Miinchen, 1996.

UML Group. Unified Modeling Language. Version 1.1, Rational Software
Corporation, Santa Clara, CA-95051, USA, July 1997.

D. Harel. On Visual Formalisms. Communications of the ACM, 31(5):514~
531, May 1988.

IBM. Component Broker Technical Overview. IBM report, 1998.

JavaSoft. JNDI: Java Naming and Directory Interface. Version 1.1, Sun
Microsystems, January 1998.

H. Jubin and Jalapeno Team. Cooking Beans in the Enterprise. IBM report,
1998.

C. Klein, B. Rumpe, and M. Broy. A stream-based mathematical model for
distributed information processing systems - SysLab system model - . In J.-
B. Stefani E. Naijm, editor, FMOODS’96 Formal Methods for Open Object-
based Distributed Systems, pages 323-338. ENST France Telecom, 1996.

Sun Microsystems. Java Beans. Version 1.01, Sun Microsystems, July 1997.

R. Orfali and D. Harkey. Client/Server Programming with JAVA and
CORBA. John Wiley and Sons, 1997.

R. Orfali, D. Harkey, and J. Edwards. The FEssential Distributed Objects
Survival Guide. John Wiley and Sons, 1996.

B. Paech and B. Rumpe. State based service description. In J. Derrick, editor,
Formal Methods for Open Object-based Distributed Systems. Chapman-Hall,
1997.

16



