Stepwise Refinement of Data Flow
Architectures *

Jan Philipps Bernhard Rumpe

Institut fur Informatik
Technische Universitat Miinchen
D-80290 Miinchen
{philipps,rumpe}@informatik.tu-muenchen.de

Abstract

Software and hardware architectures are prone to modifications. We demon-
strate how a mathematically founded refinement calculus for a class of ar-
chitectures, namely data flow networks, can be used to modify a system in
a provably correct way. The calculus consists of basic rules to add and to
remove components and channels to a system.

1 Introduction

The architecture of a software or hardware system influences its efficiency, its adaptility,
and the reusability of components. Especially the adaption to new requirements causes
frequent changes in the architecture while the system is developed, or when it is later
extended. However, the definition of architecture is still rather informal in the software
engineering community, and the question of how to properly modify an architecture has
not been adequately addressed so far.

In this paper, we examine how a certain class of system architectures, namely data flow
networks, can be modified, so that the new system is a provably correct refinement of
the original system. Our work is based on a precise mathematical model [2, 3, 4] for such
data flow networks. This model gives a compositional semantics to data flow networks,
and hence components can be structurally composed to build hierarchical models of a
system.

The semantic model is simple, yet powerful: when specifying component behavior, cer-
tain aspects can be left open. We refer to this style as underspecification. The reduction

* This paper partly originates from the SYSLAB project, which is supported by the DFG under the
Leibniz program, by Siemens-Nixdorf and Siemens Corporate Research.

of this underspecification immediately gives a refinement relation for black box behav-
iors.

In addition to black-box or behavioral refinement, two other classes of refinement relation
can be established:

e structural refinement (glass box refinement)

e signature refinement

While black box refinement only relates black box behaviors of not further detailed com-
ponents, structural refinement allows us to refine a black box behavior by a subsystem
architecture. Signature refinement deals with the manipulation of the system or com-
ponent interfaces. As shown in [1], both structural and signature refinement can be
reduced to behavioral refinement. In Section 2 we will see that behavioral refinement is
a simple subset relation.

Neither of these three refinement classes, however, allows architectural refinement in
the sense that two glassbox architectures are related. In [10], we introduced a concept
for glass-box refinement; again, it can be defined in terms of behavioral refinement.
For the practical application of architectural refinement, we defined a rule system to
incrementally change an architecture, e.g. by adding new components or channels.

In this paper, we demonstrate in detail how the rule system can be applied to a concrete
example. It is structured as follows. In Sections 2 and 3 we present the mathematical
foundations and define the concepts of component and system. In Section 4 we summa-
rize the rules introduced in [10]. Section 5 describes the refinement of the refinement of
a simple data acquisition system. Section 6 concludes.

2 Semantic Model

In this section we introduce the basic mathematical concepts for the description of sys-
tems. We concentrate on interactive systems that communicate asynchronously through
channels. A component is modeled as a relation over input and output communication
histories that obeys certain causality constraints.

We assume that there is a given set of channel identifiers, C, and a given set of messages,
M.

Streams. We use streams to describe communication histories on channels. A stream
over the set M is a finite or infinite sequence of elements from M. By M* we denote the
finite sequences over the set M. The set M* includes the empty sequence that we write
as (). The set of infinite sequences over M is denoted by M.

Communication histories are represented by timed streams:

MN = def (M*)oo

The intuition is that the time axis is divided into an infinite stream of time intervals,
where in each interval a finite number of messages may be transmitted.

These intervals are often of a fixed duration, such as months or days for reports in
business information systems, or milliseconds in more technical applications. Their
duration need not be fixed, however: the intervals could also span the time between
certain events that are of interest to the system, such as the pressing of a button. In
each interval, the order of the messages is fixed, but the exact arrival time of a message
is unknown.

For i € N and z € M® we denote by z | i the sequence of the first ¢ sequences in the
stream z. When writing specifications, we sometimes ignore the interval boundaries,
and regard a stream as the finite or infinite sequence of messages that results from the
concatenation of all the intervals. We then use the syntax a & r to split a stream into
its first element a, and the remaining sequence r.

A named stream tuple is a function C — M™® that assigns histories to channel names.
For C' C C we write ﬁ for the set of named stream tuples with domain C.

For z € C and (" C (), the named stream tuple z |/ € 8’ denotes the restriction of z
to the channels in C":

Vee Oz |o (¢) =z(c)

Behaviors. We model the interface behavior of a component with the set of input
channels I C C and the set of output channels O C C by a function

3: T —P(0)

Intuitively, # maps the incoming input on [to the set of possible outputs on O, and
thus describes the visible behavior of a component with input channels I and outputs
channels O.

Equivalently, 3 can be seen as a relation over the named stream tuples in T and the
named stream tuples in 0. (3 is called a behavior. Since for every input history multiple
output histories can be allowed by a behavior, it is possible to model nondeterminism, or
equivalently, to regard relations with multiple outputs for one input as underspecified.

A function f € T — O can be seen as a special case of a deterministic relation. We
say the f is time guarded, iff for all input histories z and y, and for all 7 € N

sli=yli=) li+)=0y)l6E+1)

A time guarded function f is called a strategy for a behavior § if for all z we have
f(z) € B(z). If B has at least one strategy, we say that 3 is realizable.

Time guardedness reflects the notion of time and causality. The output at a certain time
interval may only depend on the input received so far, and not on future input.

Interface adaption. Given a behavior 3 : 7>]P’(ﬁ), we can define a behavior with
a different interface by extending the set of input Channels,, and restricting the set of
output channels. If I C I' and O" C O, then ' = ﬁilo, is again a behavior with

B'(i) = (B(i |1)) lo-
This corresponds to the change of the component interface by adding input channels

that are ignored by the component, and by removing output channels that are ignored
by the environment.

Composition. Behaviors can be composed by a variety of operators. Sequential and
parallel composition, as well as a feedback construction is introduced in [6]. For our
work, we use a generalized operator ® that composes a finite set of behaviors
— —> — —
B = {/81 : [1 —]P)(Ol): N '7ﬁn : [n —]P)(On)}
in parallel with implicit feedback. We define

O = Ui<k<n Ox
I'= (Uick<ndi) \ O

where O is the union of all component outputs, and I is the set of those inputs, that
are not connected to any of the components’ outputs.

Then the relation ®B € T —]P’(ﬁ) is characterized by:

0 € (@B)(i)
dle(IU 09 :
l|O:OAl|1:iA
VkE{l,...n}: l|0k€ ﬁk(l |]k)

If all behaviors in B are realizable, then so is @ B. The proof follows [6]; it relies on the
time guardedness of strategy functions.

It is easy to express parallel and sequential composition of behaviors with the ® operator.

Refinement. Intuitively, a behavior describes the externally observable input/output
relation that the clients of a component may rely on. Refining a behavior in a modular
way means that the client’s demands are still met, when the component behavior is
specialized.

Formally, the refinement relation in our framework is defined as follows. Given two
behaviors 3, f, € 7]P’(ﬁ) we say that (3, is refined by (s, iff

Vie T :By(i) C Buli)

Refinement means in our context that each possible channel history of the new compo-
nent is also a possible channel history of the original component.

3 Components and Systems

In this section, we define an abstract notion of system architecture. Basically, a system
consists of a set of components and their connections. We first define components, and
then introduce the architectural or glass box view, and the black box view of a system.

Components. A component is a tuple ¢ = (n, I, O,), where n is the name of the
component, I C C is the set of input channels, and O C C the set of output channels.
Moreover, : I —]P’(B) is a behavior.

The operators name.c, in.c, out.c and behav.c yield n, I, O and (3, respectively. The
name n is introduced mainly as a convenience for the system designer. The channel
identifiers in.c and out.c define the interface of the component.

Architectural view of a system. In the architectural view, a system comprises a finite
set of components. A connection between components is established by using the same
channel name.

A system is thus a tuple S = (I, O, C), where I C C is the input interface, and O C C
is the output interface of the system. C' is a finite set of components.

We want to be able to decompose systems hierarchically. In fact, as we will see, a
system can be regarded as an ordinary component. Therefore systems need not be
closed (having empty interfaces), and we introduce the interface channels I and O to
distinguish external from internal channels.

We define the operators in.S, out.S, arch.S to return I, O and C, respectively. In
addition, we write:

in.C —def Ucearch.S(in'C)
out.C —def Ucearch.S(OUt'C)

for the union of the input or output interfaces, respectively, of the components of §.

The following consistency conditions ensure a meaningful architectural view of a system
S. Let ¢, ¢1, co € arch.S be components, with ¢; # ¢s.

(1) name.c; # name.cy Different components have different names

(2) out.c; Nout.co = @ FEach channel s controlled by only one

component

(3) inSNout.c=g Input channels of the system interface are
controlled by the environment, mnot by a
component

(4) in.c Cout.CUin.S Each input channel of a component con-
trolled by either another component or by the
environment

(5) out.S Cout.C' Each channel of the output interface is con-
trolled by a component

Note that we allow that input channels are in more than one interface: a channel can
have multiple readers, even broadcasting is possible. Not every channel of the system
input interface has to be connected to a component, since condition 4 only requires the
subset relation instead of equality.

We allow a component to read and write on the same channel if desired; as a consequence
of conditions (3) and (5), however, system input and output are disjoint.

Black Box view of a system. The behavior of a component ¢ is given in terms of its
relation behav.c between input and output streams. We define the black box behavior of
a system S composed of finitely many components arch.§ using the composition operator
®. The result of this composition is then made compatible with the system interface by
restricting the output channels to those in out.S, and by extending the input channels
to those in in.S":

[S] = (®{ behav.c | ¢ € arch.§ })3"?

out.S

Because of the context conditions for systems the composition is well-defined. The hiding
of the internal output channels out.C' \ out.S and the extension with the unused input
channels in.S \ in.C' is also well-defined.

The black box behavior has the signature:

[5] : in.g — P(out.S)

Thus, the black box behavior can now be used as a component description itself. Intro-
ducing a fresh name n, we define the component cg as:

cs = (n,in.S,out.S, [S])

In this way, a hierachy of architectural views can be defined and iteratively refined and
detailed.

Later on we need a more detailed definition of this semantics. By expanding the defi-
nitions of the ® and J operators, we obtain the following equivalent characterisation of

[(1,0,C)]:

o€[(1,0,0)](i) &
dle (IUout.C’i :
l|O:0Al|]:iA
Vee C: lou.c€ (behav.c)(l |ine)

This expanded characterisation says, that o is an output of the system for input ¢ (line
1), iff there is a mapping [of all channels to streams (line 2), such that [coincides with
the given input i and output o on the system interface channels (line 3) and feeding the
proper submapping of / into a component results also in a submapping of [.

4 Refinement of system architectures

When a system is refined, it must not break the interaction with its environment. The
observable behavior of a refined system must be a refinement of the behavior of the
original system.

In this paper, we leave the interface of the system unchanged. Interface refinements that
affect the signature of a system S are described in [1] for black box behaviors; they can
be adapted to our architectural framework. We also ignore aspects of realizability. The
techniques used to prove that a component specification is realizable are orthogonal to
the rules presented here, and will not be considered in this paper.

We therefore define the refinement relation on systems as a behavioral refinement on the
given interface:

S Sy Vi €8 1 [S](i) C [S](5)

As explained above, we tacitly assume that in.S = in.S” and out.S5 = out.S’. Stepwise
refinement is possible, since the refinement relation is transitive:

SsS' A S8 = S S

In [10], we defined and justified a set of constructive refinement rules that allows re-
finements of system architectures. The rules allow us to add and remove components,
to add and remove channels, to refine the behavior of components, and to refine single
components to subsystems and vice versa.

In the sequel, we summarize these rules; in Section 5 we will apply them to a simple
example. Each rule refines a system S = (I, O, C) into another system S’ = (I, O, C").
We use the syntax

S witH C := ('
to denote the system (I, O, C’). In addition, we write
S WITH ¢ := ¢’

to denote the system (I, O, (C \ {c}) U{c'}).

To create a component with the same name and interface as ¢ = (n, I, O, 3), but with
a different behavior (', we use the syntax

¢ WITH behav.c := ('

to denote the component (n, I, O, #'). Similarly, we can change the name or interface of
a component.

The refinement rules are presented in the syntax

‘ (Premises)

‘ (Refinement)

where the premises are conditions to be fulfilled for the refinement relation to hold.

Behavioral refinement. Systems can be refined by refining the behavior of their com-
ponents. Let ¢ € C be a component. If we refine the behavior of ¢ to (3, we get a
refinement of the externally visible, global system behavior:

ceC
Vi€ ine: B(i) C behav.c

‘ S~~85 WITH behav.c := (3

In some cases, to prove the behavioral refinement of ¢ some assumptions on the contents
of ¢’s input channels are necessary. Then this simple rule cannot be used.

To overcome this problem, we introduce the notion of behavioral refinement in the
context of an invariant. An invariant is a predicate ¥ over the possible message flows
within a system S = (I, O, C):

U (IUout.Ci — B

An invariant is valid within a system, if it holds for all named stream tuples [defining
the system’s streams. This can be formally expressed similar to the expanded definition
of the system semantics [S] presented in Section 3:

Vie (IUout.Cy:

(Ve e C:lou.c€ (behav.c)(l |ine)) = Y(1)

Note that invariants are not allowed to restrict the possible inputs on channels from 7,
but only characterize the internal message flow.

Let us now assume that we want to replace the behavior of component ¢ by a new
behavior . The latter is a refinement of behav.c under the invariant ¥, when:

Vie(IUout.Cy:

V(1) = B(I |inc) C (behav.c)(|in.c)

Thus, the complete refinement rule is as follows. The two premises express that ¥ is a
valid invariant, and that (refines behav.c under this invariant.

Vie({Iuout.C):

(Vee Ol o€ (behav.c)(l fine)) = (1)

Vie TUout.C):

V(1) = B in.c) € (behav.c)(l |in.c)

S~~85 WITH behav.c := (3

This rule is the only one that requires global properties of a system as a premise. The
other rules only deal locally with one affected component. However, since ¥ is used
only for a single application of this rule, it is often sufficient to prove its invariance with
respect to a relevant subset of all the system components.

Behavioral refinement of a component usually leads to true behavioral refinement of the
system. This is in general not the case for the following architectural refinements, which
leave the global system behavior unchanged.

Adding and removing output channels. If a channel is neither connected to a system
component, nor part of the system interface, it may be added as a new output channel
to a component ¢ € arch.S":

peC\ (IUout.C)

g€ in.c — P(out.cU {p ;)
Vi,o0: 0 € (i) < 0 |ou.c€ behav.c(7)

S~+S5 WITH
out.c := out.c U {p}
behav.c := (3

The new behavior § does not restrict the possible output on channel p. Hence, the
introduction of new output channels increases the nondeterminism of the component. It
does not, however, affect the behavior of the composed system, since p is neither part
of the system interface nor connected to any other component. The contents of the new
channel can be restricted with the behavioral refinement rule.

Similarly, an output channel p € out.c can be removed from the component ¢, provided
that it is not used elsewhere in the system:

p € OUin.C

8= behaV-CiLnlth.c\{p}

S~~S WITH
out.c :=out.c \ {p}
behav.c := (3

The new behavior 3 is the restriction of the component behavior behav.c to the remaining
channels.

Adding and removing output channels are complementary transformations. Conse-
quently, both rules are behavior preserving. This is not surprising, since the channel in
question so far is not used by any other component.

Adding and removing input channels. An input channel p € C may be added to a
component ¢ € C, if it is already connected to the output of some other component or
to the input from the environment:

p € lUout.C
3 = behav. ¢} Uird

out.c

S~~S WITH
in.c:=in.cU{p}
behav.c := (3

The new behavior § now receives input from the new input channel p, but is still
independent of the data in p.

If the behavior of a component ¢ does not depend on the input from a channel p, the
channel may be removed:

VZ, i €in.c: 1 |in.c\{p}: i’ |in.c\{p}
= behav.c(i) = behav.c(7')
Vi€in.c: B(i [ine\(p)) = behav.c(i)

S~+S WITH
in.c:=in.c\ {p}
behav.c := (3

Because the component does not depend on the input from p (first premise), there is a
behavior [satisfying the second premise.

The rule for removing input channels might seem useless — why should a component
have an input it does not rely on? However, note that it is possible to first add new
input channels that provide basically the same information as an existing channel, then
to change the component’s behavior so that it relies on the new channels instead. Finally,
the old channel can safely be reduced.

As with output channels, adding and removing input channels are complementary trans-
formations and thus behavior preserving. This is because the input channels do not influ-
ence the component’s behavior, and therefore the global system behavior is unchanged,
too.

Adding and removing components. A component can be added without without
changing the global system behavior if we ensure that it is not connected to the other
components, or to the system environment. Later, we may successively add input or
output channels, and refine the new component’s behavior with the previously given
rules.

‘ Vee C: name.c#n

‘ S~Swith C == CU{(n,2,9,a)}

The premise simply ensures that the name n is fresh; the new behavior a is somewhat
subtle: it is the unique behavior of a component with no input and no output channels:

{0} = a(0)-

Similarly, components may be removed if they have no output ports that might influence
the functionality of the system.

‘ out.c = &
‘ S~~S witH C = C \ {c}

Expanding and Folding. As we have seen, components can be defined with the black
box view of systems. In this way system architectures can be decomposed hierarchically:
a single component of a system is replaced by another system. We therefore need a rule
for expansion of components. Assume a given system architecture S = (Ig, Og, Cs)
contains a component ¢ € Cg. This component ¢ is itself described by an architecture
T = (Ir, Or, Cr). The names of the components in T are assumed to be disjoint from
those in §; through renaming this can always be ensured. The expansion of 7 in §
takes the components and channels of 7' and incorporates them within §.

Cc = (n,]T, OT, [[T]])
out.Cr Nout.Cs = out.c
out.CrNilg=o

‘ S~~»S WITH Cs := Cs \ {c} U Cr

The first premise means that the architecture 7' describes the component ¢. The other
two premises require that the internal channels of 7', which are given by out.Cy \ Or,
are not used in §. In general, this can be accomplished through a renaming rule, which
it would be straightforward to define.

The complementary operation to the expansion of a component is the folding of a sub-
architecture T = (I, Or, C7) of a given system S = (I, O, C).

T is a subarchitecture of §, if

e the components Cr are a subset of the components C' of S;

e the inputs I of T at least include the inputs of the components in C'r that are not
connected to some output of a component in C7; they may include other inputs
as well, except those input channels that are either in the global system input [
or controlled by a component in the complete system C';

e similarly, the outputs Or are a subset of the component outputs out.Cr, and
include at least those outputs from out.Cr that are connected to either the envi-
ronment or to other components in C.

The folding rule is defined as follows:

Key
PRE RDB Data

Figure 1: Database example

CrCC

in.C’T\out.C’T Q]T g ([UOUt.C)\OT
OUt.CT N (O U m(C’\ CT)) g OT g OUt.CT
Vee C\ Cr: name.c #n

S~S WiTH C := C\ CrU{(n, Iy, Or, [T])}

The first three premises are the conditions mentioned above; the fourth premise requires
that the name n of the new component is not used elsewhere in the resulting system.

5 Refinement example

In this section, we demonstrate how our refinement rule system can be used in practice.
Our example architecture is shown in Figure 1; it models a small data acquisition system.

The system reads input via an input In; the messages on In consist of pairs of a key and
some data to be stored under this key; new data values for the same key overwrite old
values. Concurrently, the system answers request for the data of a certain key that is
input via channel Key by transmitting the data stored in the database under this key
via channel Data.

Internally, the system consists of two components: a preprocessor PRE, and a database
RDB. The data from the environment first undergoes some transformations in PRE, and
is then forwarded via the internal channel | to the remote database.

Let Key be the set of possible keys for the database, and Data the set of possible data
values. Then, Entry = Key X Data is the set of possible entries for the database. The
database itself is modeled as a function M : Key — Data. We write M (k) for the
data item stored under key k. If there is not yet a proper item stored under k, then
M (k) should return an otherwise unused item L. By M[k — d] we denote the updated
database M', where M'(j) = d if j = k, and M'(j) = M (j) otherwise.

The two components PRE and RDB are specified as state machines (Figures 2, 3). We
assume that there is a given function f : Data — Data, that handles the preprocessing
for a single datum.

In order to reduce the transmission time for the entries, we now want to transmit for
each entry only the difference of the entry’s data with respect to the already stored data
for that key; the differences are assumed to be smaller in size than the data itself. Of

In?(k,d)/1\(k,f d)
Figure 2: Preprocessor specification

' 12(k, d)/M = M[k — d]

RDB

‘ Key?k /Datal(M(k))

Figure 3: Remote database specification

course, the first entry for each key will need to be transmitted completely.

We are not intersted in the algorithmic aspects of the computation of the difference
between old data and new data; we just assume that the difference between two data
items is itself an element of Data, and that there is a function

A : Data x Data — Data

that computes the difference between old and new data. Another function
p : Data X Data — Delta

reconstructs the new data given old data and the difference. We require that
P(dota; A dotd; Inew)) = dnew

To simplify our specifications, we also assume that

A(L,d)=4d, p(L,0)=¢

These two function can be extended to streams, where they take a database M as an
additional parameter:

Informally, the system modification is simple: the preprocessor is extended with a lo-
cal database; for each new entry the difference to the old is computed and forwarded.
The remote database reads the input, computes the new value out of stored value and
received difference, and stores this new value in its database. One possible design for
this modification is to introduce encoding and decoding components, that compute the
differences and reconstruct the original data, respectively.

In the sequel, we show how this refinement can be justified with our rule system. The
modification consists of eight steps.

Step 1: Adding components. First, we introduce two new components to the system
by two applications of the refinement rule. The new components, ENC and DEC, are
not connected to any other component in the system.

After this refinement step, the system looks as follows:

Key
PRE RDB Data

ENC DEC

Step 2: Adding output channels. Now we add an output channel D to ENC, and
an output channel R to DEC. Since these channels are neither part of the system inter-
face, nor previously connected to any component, the premises of the refinement rule
for the addition of channels are satisfied. Note that the contents of the channel are so
far completely undefined, and the components ENC and DEC are therefore now nonde-
terministic. Nevertheless, the behavior of the system itself is unchanged, since the data
on the new channels is unused throughout the system.

The following figure depicts the system after this refinement step;

PRE RDB Data

ENC DEC

Step 3: Adding input channels. We now connect the channel | to the encoder ENC.
The encoder still ignores the additional input, however, and hence the output D of ENC
is still arbitrary. Similarly, we connect D to the decoder.

The system now looks like this:

Key
PRE RDB Data

ENC DEC

Step 4: Behavioral refinement. Now we constrain the channels D and R to carry the
differences of the data on | and the reconstructed data, respectively. This is accomplished
by restricting the behavior of ENC and DEC, and we can use the simple behavioral
refinement rule for this step.

The encoder component is now specified as follows:

(ENGC, {1}, {D},9)

where
VI 1"e B(l) < I'(D) = ALl
Thus, the encoder just applies the difference function A* to its input stream |.

Similarly, we define the behavior of DEC as an application of the restoration function
p. Since until now the behavior of the components was completely unspecified, this
refinement is obviously correct.

The structure of the system remains unchanged.

Step 5: Adding an input channel. We now connect the channel R to the remote
database. The behavior of RDB still ignores the additional input, however.

This step gives us the following system:

Key
PRE RDB Data

ENC DEC

Step 6: Behavioral refinement with invariant. Now we want the remote database to
store the data transmitted on R instead of that on I. Conversely, the input via | should
be ignored.

The new behavior can again be specified as a state transition diagram; it looks just like
the one in Figure 3, except that the upper transition reads from channel R instead of
channel I.

Unfortunately, we cannot prove this refinement step with the simple behavioral refine-
ment rule used in Step 4. The reason is that after the refinement the behavior of RDB
is only then still correct, if the data on R is the same as that on |. Since neither R nor |
is controlled by RDB, this cannot be proven locally.

The solution here is to use the behavioral refinement rule with an invariant. Intuitively,
we know that encoding and then decoding the processed data from PRE yields the same
data as that on I.

We can formalize this knowledge with the following invariant:
(1) =aer U(1) = p5 (AL (1))

To show that ¥ is indeed an invariant we prove the following property, which implies W¥:
Vo, VM :py(Ay(z)) =12

The proof is by induction on z:

e If z = (), we have for all M: A%,(z) = (), and hence p}, (A%, (())) = ().

o If z = (k,d) &y, then for an arbitrary M:
P (A
Py
(k, p(M(k), A(M(k), d))) &PM[ka(M(k),A(M(k),d))](A?w[md} (y)) =
(k, d) &pM[kHd}(AM[lm—)d] (y) =
(k,d) &

k,d)&y)) =

((k,
(ks A(M (), d) & Ay (9)) =

To prove the second premise of the behavioral refinement rule with invariant is then
straightforward.

The structure of the system remains unchanged.

Step 7: Removing an input channel. Since the behavior of RDB now depends only
on the data on R, and not on that in I, we can disconnect | from RDB. The channel |
now only feeds the encoder.

The new system looks as follows:

Key
RDB Data

DEC

Step 8: Folding subsystems. In the last refinement step, we fold the two components
PRE and ENC to a new component PRE’, and DEC together with RDB to a new
component RDB’:

PRE' | RDB/ | Key
PRE RDB Data

ENC DEC

Comments on the transformation. The refinement steps described above are not fully
formal; they cannot be, since we did not use a properly formalized description of the
component behaviors. Of course, state transition diagrams can be given a mathematical
semantics [5], and in [11] a refinement calculus for state transition diagrams is defined.
We hope, however, that the example shows that although each individual refinement
rule is quite simple, they can be used together for complex system transformations.

As expected, the behavioral rule with invariant is the most complex rule to apply. In
general, it is a difficult task for the system designer to find a proper invariant W that is
both easy to establish and sufficiently strong to use. The maximal invariant W(l) = True
leads to our initially given simple refinement rule without an invariant. The minimal
possible ¥ gives an exact description of the internal behavior of a system, but it is often
difficult to find and too complex to use.

If one wants to change the behavioral descriptions of a component — in our example, to
change the remote database so that it stores the data on R instead of that on | —, one
can take advantage of his knowlege about the dependencies between internal streams.
Thus, when designing systems for adaptility, one should strive not for efficiency, but first
for clarity of design, where information in all channels is as explicit as possible. Later,
refinement steps should remove the redundancy to gain an efficient implementation of
the system.

6 Conclusion

We believe that the question of how to manipulate and adapt an architecture during
system development has not been adequately addressed so far. In particular, a basic
calculus, dealing with simple addition ond removing of channels and components in an
architectural style has—to our knowledge—mnot been considered before.

The most promising attempt at architecture refinement so far has been given in [8, 9].
In that work, data flow architectures are implemented by shared-memory architectures.
However, the semantics used is not particularly well-suited for data flow, and they
do not seem to support nondeterminism or underspecification. Hence they only allow
“faithful implementation” which is in contrast to our approach. They do not allow
adding or removing data flow connections, which seems to stem from the lack of support

for underspecification in their model. Underspecification is the primary source that
allows us to change the information structure of an architecture. In our history-based
semantics, underspecification can be easily handled.

We think that a simple refinement calculus, especially one well-suited for the graphical
manipulation of data flow networks, is crucial for the applicability of a formal method.
The calculus defined in this paper allows to reuse given architectures or architectural
patterns and to adapt them to specific needs. It is therefore interesting to develop a
library of dataflow architecture designs for different applications.

Our calculus currently only deals with refinement internal to the system. As future
work, we will extend it with rules to change the interface signature in the style of [1].
The new rules will allow us to change the input or output channels of a system, as well
as to split one channel into several channels carrying parts of the original information
or vice versa.

Another interesting direction is the description of component behaviors by state ma-
chines and the application of state machine refinement rules (as defined e.g. in [11]) for
component behavior refinement. A concrete description technique for the component
behaviors is essential for the proof of the invariant in the behavior refinement rule. We
have defined our calculus so that it can be incorporated into CASE tools. A prototypical
tool, AuTOFoCuUs [7], is currently under development at our department. AuTOFOCUS
already has a graphical syntax for system structures similar to the ones we use, and also
provides state-machine-based specification mechanisms for component behavior.

Finally, architecture refinement is by no means limited to business information systems.
Another promising application area is hardware design and in particular the codesign
of hardware and software components, where frequently a basic design has be changed
because of cost or performance considerations. Moreover, the simpler description tech-
niques used in hardware design and the finite-state nature of such systems open the door
to automatic verification of the refinement rule premises.

References

[1] M. Broy. Interaction refinement the easy way. In M. Broy, editor, Program Design
Calculi. Springer NATO ASI Series, Series F: Computer and System Sciences, Vol.
118, 1993.

(2] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T.F. Gritzner, and R. Weber. The
Design of Distributed Systems - An Introduction to FOCUS. Technical Report SFB
342/2/92 A, Technische Universitdt Miinchen, 1993. http://www4.informatik.tu-
muenchen.de/reports/TUM-19202.ps.gz.

3] M. Broy and K. Stglen. Specification and Refinement of Finite Dataflow Net-
works — a Relational Approach. In Proc. FTRTFT’9/, LNCS 863, pages 247-267.
Springer-Verlag, Berlin, 1994.

[4] M. Broy and K. Stelen. Focus on system development. Book manuscript, 1997.

[5] Manfred Broy. The specification of system components by state transition diagrams.
Technical Report TUM-19729, 1997.

[6]

[9]
[10]

[11]

Radu Grosu and Ketil Stoelen. A Model for Mobile Point-to-Point Data-flow
Networks without Channel Sharing . In Martin Wirsing, editor, AMAST’96. LNCS,
1996.

Franz Huber, Bernhard Schitz, Alexander Schmidt, and Katharina Spies. AutoFo-
cus - A Tool for Distributed Systems Specification . In Bengt Jonsson and Joachim
Parrow, editors, Proceedings FTRTFT’96 - Formal Techniques in Real-Time and
Fault-Tolerant Systems, pages 467-470. LNCS 1135, Springer Verlag, 1996.

M. Moriconi and Xiaolei Qian. Correctness and composition software architectures.
In Proceedings of ACM SIGSOFT 94, pages 164—174, 1994.

M. Moriconi, Xiaolei Qian, and R. Riemenschneider. Correct architecture refine-
ment. [EEE Transaction on Software Engineering, 21(4):356-372, April 1995.

J. Philipps and B. Rumpe. Refinement of information flow architectures. In
M. Hinchey, editor, ICFEM’97. IEEE CS Press, 1997.

Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Sys-
teme. PhD thesis, Technische Universitat Miinchen, 1996.

