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ABSTRACT

Relating formal refinement techniques with commercial object-
oriented software development methods is important to achieve enhancement
of the power and flexibility of these software development methods- and tools.
We will present an automata model together with a denotational and an op-
erational semantics to describe the behavior of objects. Based on the given
semantics, we define a set of powerful refinement rules, and discuss their appli-
cability in software engineering practice, especially with the use of inheritance.

1 INTRODUCTION

1.1 Software Development Methods: Theory and Prac-
tice

In the industrial practice of software engineering in the last fiveteen years a mul-
titude of so-called software development methods have been developed. Such
methods, such as SSADM [AG90], OMT [RBPEL91] or Fusion [CABDGHJ94],
normally use different description techniques for describing different views of
a software product to be developed. On the one hand, these description tech-
niques provide notations which are well-suited for the communication with the

IThis paper originated in the SYSLAB project, supported by the DFG (Deutsche
Forschungs Gemeinschaft) and by Siemens-Nixdorf
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application expert, and which can be efficiently used for typical modeling prob-
lems such as data modeling (e.g. entity-/relationship-diagrams, [C76]). On the
other hand, however, these description techniques lack a precisely defined se-
mantics. Even their syntax is sometimes only defined informally, e.g. by giving
examples. As a result, a lot of problems during the application of such methods
arise, which are caused by the ambiguous interpretation of the semantics of the
used modeling concepts:

e problems concerning the communication between different persons in-
volved in the project occur due to ambiguities arising from informal se-
mantic definitions,

e it is impossible to define formal relationships between different system
views and to define rules to transfer information between different de-
scription levels,

e and moreover even in one description level there is a lack of clarity con-
cerning issues of ”consistency” and ”completeness”.

As a consequence, tool systems assisting methods (so called ” CASE-Tools”)
often do not cause the expected gain in productivity: The information which
can be acquired by the use of methods is, because of the deficient semantic foun-
dation of the methods, not very evident. As a result of this the functionality
of tools is mostly restricted to document editing- and managing functions.

The vast literature concerning the commercial software development meth-
ods at least suggests that these methods are widely applied in industry. An-
other important research direction in academia, however, are formal methods.
These techniques are based on mathematical models of information processing
systems, such as process algebras ([M89], [H85]), structures of temporal logic
[L91], or stream processing functions [BDDFGW93]. They are equipped with
powerful refinement techniques, allowing to formally relate models on very dif-
ferent abstraction levels. As description techniques, various logical languages
are used.

While formal methods are theoretically appealing, their acceptance in in-
dustry is still in its infancy. We think that the main reasons for this are:

e the produced documents can not be used as the basis for communication
with the application expert, because they consist of logical formulae which
are difficult to understand even for many software engineers.

e no description techniques are provided for typical modeling problems such
as e.g. data modeling.

e the refinement calculus provides only a set of ”low-level”, fine-grained
refinement rules with an emphasize on completeness. What is needed
are powerful, large-grained refinement rules which are tailored for typical
refinement problems and typical description techniques.
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It is the aim of this paper to present a step towards closing the above-
sketched gap between theory and practice. We believe that both worlds, theory
and practice, can benefit from such an approach. For formal methods, commer-
cially successful description techniques may aid in scaling up these methods for
their application in the development of larger systems. Commercial methods
may benefit conceptually by more precisely defined concepts, and by CASE-
tools with enhanced functionalities such as improved consistency checks and
more powerful generation- and analysation facilities.

1.2 Overview of the paper

Typical for all object-oriented software development methods are description
techniques of the following two kinds:

e A description technique for data modeling.
These description techniques are normally based on the entity-/relation-
ship-model [C76], which is extended in various ways. Data models de-
scribe the structure of the persistent data of a system, and some integrity
constraints. Entity-/relationship-modeling is the most widely used mod-
eling technique.

e A description technique for modeling behavior.
State-Transition diagrams, or automata, are used to model the behavior
of the whole system, of subsystems or of single objects. For reducing the
complexity of the notation, hierarchical state-transition diagrams such as
statecharts [H87] have been proposed, which are used e.g. in OMT.

In this paper, we will present an automaton model which is well-suited for
the description of the behavior of objects. We will consider objects as being
active entities encapsulating a local data space and a local process, and which
communicate with asynchronous message passing. This kind of objects can
not be tackled adequately with well known modeling approaches, but they
are gaining importance in industry in the context of distributed client-/server
applications.

The paper is organized as follows: In the following section, we define the
abstract syntax and a concrete graphical notation for our automata. The main
purpose of the graphical notation is to illustrate the examples. In section 3, the
denotational semantics of an automaton is given by a predicate characterizing
a set, of stream processing functions (see [ BDDFGW93], [RKB95]), and the op-
erational semantics is defined as the set of their executions. Based on the given
denotational semantics, we will continue by define a calculus for refinement
which is well-suited for the use by application experts and software engineers.
We show the usefulness of the refinement rules by a short example.



268 Chapter 16

2 MESSAGE PROCESSING AUTOMATA

In this section, we define the abstract syntax for message processing automata
(in short automata) as well as one notation for them.

We will use automata to model the input-/output behavior of components.
For this purpose, we will not use a black-box-view, which only relates the in-
put and the output of a component. Instead, we will use an abstraction of the
internal structure of a component. This approach is also called the ”state-box-
view”, e.g. in the cleanroom software engineering method ([MDLS87], [HM93]).
We will also abstract from the concrete messages which objects may receive
and send. Instead, we model equivalence classes of these messages, called char-
acters. One such equivalence class is for example the set of all messages of the
same type, abbreviated by the name of this type.

An automaton describes the reaction of a component with respect to a
given input stimulus and a given state. The automaton consumes the input
message, produces a sequence of output messages, and enters a new state for
processing the next input message. Thus, transitions are labeled with sequences
of messages, as this is the case in mealy automata [HU90].

Our approach for modeling the input-/output behavior of components is
closely related with I/O-automata ([J87], [J85], [LS89]). One transition of an
I/O-automaton can input a character, output a character, or it can be an
internal transition. The processing of an input character triggers a sequence of
further transitions, where each transition may output a further character. To
guarantee that the environment of an I/O-automaton may send messages at any
point in time, an additional constraint called ”input enabledness” is imposed
on the transition relation. Because an I/O-automaton can only accept or emit
one character per transition, it needs a fine grained set of control states. Our
notion of an automaton is more abstract, it labels transitions with the input
character as well as with output characters, thus modeling the input characters
causal for the output. Therefore, no intermediate control states are necessary.
One transition models the handling of a complete message, describing input
and output as well as the internal state change. We only use abstract data
states, characterizing equivalence classes of the data states of the modeled
components.

2.1 Abstract Syntax for Automata

The abstract syntax contains only the essence of the concrete textual or graph-
ical notation of the automaton, while it ignores the keywords used or the con-
crete shape of the graphical symbols. We define the abstract syntax of an
automaton as follows:
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Definition 1 (Message Processing Automaton)
A message processing automaton is a J-tuple (S,M,8,1), consisting of

a set of states S,

a set of input and output characters M,

a state transition relation § C SXMXxSXM*, where the first two compo-
nents are the source state and the input message and the second two
components are the destination state and a sequence of output messages,
and

e a set I C SxM* of pairs each consisting of a start state and an initial
output.

(End Definition)

I will be called the set of initial elements. Instead of (s,m,t,out)&d we
will often write §(s,m,t,out). For given source s and input m, we write
6(s,m) as a shorthand if there exists a destination t and output out such
that 6 (s,m,t,out).

An automaton models the input-/output behavior and the state changes
of an object, which processes messages from the set M. A sequence of charac-
ters is processed in the following way: Nondeterministically, according to the
first character of the input stream and the current state of the automaton a
matching transition from § is selected. The transition is labeled with output
characters, which are sent out during the processing of the input character.
The automaton enters a new state according to the transition, in which he
continues the processing of the input stream where the first character has been
removed.

A transition models the fact that the output of the transition causally de-
pends on the input of the transition. During the processing of a transition, the
output is emitted. This does not mean that the output immediately follows
the input, but only that the output is caused by the input, and is sent some-
times later. This corresponds to possible message delay between distributed,
asynchronously communicating objects.

In contrast to finite automata ([T90], we also allow infinite state sets, and
extend transitions with output. We do not use final states, because we do not
model terminating components, but components with an infinite lifetime.

Definition 2 (Total Automaton)
An automaton (S,M,d0,1) is called total, if for each input in each state at least
one transition exists: Vs€S,meM. 6 (s,m)#D. An automaton which is not total
is called partial.

(End Definition)
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2.2 Notation for Automata

To illustrate our automata model, in the sequel we will use a graphical repre-
sentation for automata. Nodes will represent (equivalence classes of) states of
an automaton, while directed arcs will be used to represent the transitions of
an automaton. Another possibility for the concrete syntax of automata might
be the use of tables, as this is the case in [J93a], [P92] and [S94]. We will not
discuss the various advantages of graphical and textual notations for software
engineering here. An excellent survey concerning this topic can be found in
[P95].

Example 1 (Parity automaton)

The automaton in figure 1 describes the behavior of an object computing the
parity of its input messages. The automaton has two states, representing an
even or odd sum of the bits received so far. The current parity can be requested
by issuing a 7.

(End Example)

Parity: M = {0,L,7}
0
‘?50 L/ (?];L
L
o / L/

Figure 1: Graphical representation of the parity automaton

In general, the nodes represent the states S. The state transition relation 4 is
given by arcs, which are labeled with one input character m and with an output
sequence out in the form m/out. The empty output sequence ¢ is omitted for
simplicity. The initial states are characterized by arcs without source node,
which are labeled with the initial output in the form /out. Only the set M of
input- and output characters has to be given explicitly.

In software engineering methods like [SM92], [B94], [CABDGHJ94] or [J93]
state transition graphs or hierarchical extension of these are used to represent
the behavior of components. Due to the fact that the state space of compo-
nents is infinite in general, in these methods one node of a graph represents an
equivalence class of states. To allow for the formulation of propositions about
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states, pre- and postconditions are used. We will illustrate this by specifying an
object which realizes an unbounded FIFO-buffer (see figure 2). Transitions are
additionally labeled by pre- and postconditions in a suitable formal language.
For the pre- and postconditions we use the well-known Hoare notation. The
variable s denotes the source state and the variable s’ denotes the target state
of a transition. The functions #, ft and rt are defined in the appendix. Because
one node of the graph represents a non-empty set of states, there has to be a
mapping from nodes in the graph to sets of states. This mapping is defined by
conditions which are attached to the nodes and which constitute a partition of
the state space.

Buffer: M=DU{?}, S=D"I={(,e)}
oo d/ {s'=s"d}
2/ d/ {s'=<d>} {#s>2} 7/ft(s) {s'=rt(s)}

/ {s=<d>} ?/d

Figure 2: Graphical representation of a buffer automaton

3 SEMANTICS FOR AUTOMATA

We now give a denotational semantics for our automata. The denotational
semantics associates a set of stream processing functions with each automa-
ton. Stream processing functions provide an abstract, compositional semantics
for asynchronous communication objects [BDDFGW93]. We will also give an
operational semantics, associating a set of transition sequences with each au-
tomaton. These transition sequences reflect the intuitive understanding of the
operational behavior of an automaton.

3.1 Denotational Semantics

The semantic model of stream processing functions is introduced in the ap-
pendix. The semantics of an automaton is a set of stream processing functions.
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A set of stream processing functions can either be viewed to model an un-
derspecified agent, i.e. as an agent in the specification of which some details
have been left open, or as a model of a non-deterministic agent, i.e. as an
agent which non-deterministically chooses between alternatives during its life-
time. The difference between nondeterminism and underspecification can not
be observed.

Non-determinism in our automata occurs because of the non-deterministic
choice of the transition relation §. Here, any transition with matching source
state and input character may be chosen:

Definition 3 (Semantics for Total Automata)
The semantics of a total automaton (S,M,d,1) is defined as follows:

[[(S’M’(S,I)]]C déf { ge M¥ SyoMw |
3 he [[(S,M,d,D)]¢, (s;,out;)€I. Vin. g(in)=out; h(s;,in) }

where [.]€ is the greatest set of state parameterized functions satisfying the
following equation (the greatest fixpoint via set inclusion):

[(s,M,6,D]¢ 4/ { he SxM* 5 M¥ | (Vs. h(s,e) = &) A
Vm,s.3t,out.d(s,m,t,out) A Fh’€[(S,M,d5,1)]°.
Vin. h(s,m"in) = out"h’(t,in)}

(End Definition)

The recursively defined set [(S,M,5,1)]¢ consists of state parameterized
stream processing functions. According to a given input message m and the
current state s non-deterministically a transition (s,m,t,out) is chosen, the
output out is emitted and the new state t is entered. To allow for maximum
non-determinism, a new function h’ is chosen to model the behavior in the new
state. For empty input streams, an empty output stream is emitted.

In [R96] it has been shown that the

e semantics of total automata is well-defined,

e that automata cannot be inconsistent in the sense that they denote an
empty set of stream processing functions, if set I is nonempty.

A partial automaton can be viewed as shorthand for an automaton which
in certain cases leaves the target state and the output completely unspecified.
Such an automaton allows for any behavior in cases where the state transition
relation is partial for certain inputs. We call this situation chaos. Partial
automata can easily be totalized by adding auxiliary transitions. This way,
the semantic definition for partial automata can be reduced to the semantic
definition for total automata.
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3.2 Operational Semantics

We now define the operational semantics for our automata, as a set of execu-
tions. An execution describes the transitions of an automaton which are used
during the processing of a certain input sequence. An execution also describes
which output is produced and how the output causally depends on the input.

An execution is composed of the following components, which describe so-
called ezecution elements:

s %t is a (normal) transition with output, when §(s,in,t,out).
—outo so describes an initial element, when (sq,outq) €I.

Formally the execution elements are members of the sets (SxMxSxM*) and
(SxM*).

Definition 4 (Executions)
An execution is a finite or infinite sequence of execution elements. The first
element of an execution has to be an execution element without source state,
while all other elements have to be execution elements corresponding to transi-
tions. The source- and target states of subsequent execution elements have to
be identical. It is depicted as:

outg S0 inj/outy 8y ins/outs 8-

(End Definition)

Each execution describes the set of the traversed states as well as the pro-
cessed input and the produced output during execution of the transitions. The
operational semantics of an automaton is the set of all possible executions.

In [R96] it has been shown that the denotational and operational semantics
of our automata correspond to each other. The theorem proven shows that the
intuitive understanding of the computations, which is formally modeled using
the operational semantics, corresponds to the denotational semantics, which is
better suited for the correctness proof of the refinement rules in the following
section.

4 REFINEMENT TECHNIQUES

Refinement techniques are a necessary prerequisite for efficient software pro-
duction, for reusing given components, and for a transformational software
development starting with very abstract, underspecified components and re-
sulting in concrete and efficient executable code. Another area of application
is the inheritance of behavior from a super-class to a sub-class. This has been
studied extensively in another context in [PR94].
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4.1 The Refinement Calculus

For the tractability of a refinement calculus it is important that the transforma-

tion rules are described on the syntactic level. Nevertheless, the transformation

rules have to have a well defined underlying mathematical semantics for ensur-

ing their correctness. The refinement relation we use at the semantic level is the

inclusion relation between sets of stream processing functions. This way, refine-

ment corresponds to the reduction of underspecification (or non-determinism).
We define refinement as follows:

Definition 5 (Refinement)
An automaton (S’ ,M,8°,1°) is called refinement of the automaton (S,M,6,1),

iff
[(s,m,8". 1] € [(S,M,4, T)]-
This refinement relation is denoted by
(S,M,8,1) ~ (8',M,8',1")
(End Definition)

Note that the refinement relation is a transitive relation due to the fact that
the inclusion between sets (of stream processing functions) is transitive.

Transformation rules often need additional constraints (so called application
conditions) which have to be fulfilled to ensure that a transformation rule can
be successfully applied. While from the theoretical point of view a complete
and powerful set of refinement rules might be desirable, from the practical point
of view it is more important that these conditions can be effectively checked.

The transformation rules given in figure 3 are very elementary. Their full
power only reveals by their adequate composition to more powerful transfor-
mation rules.

These rules can be understood as follows:

(Arb) allows to start a development process by creating a new automaton with
arbitrary state set, message set, transition relation and initial states.

(Reml) allows to refine an existing automaton by removing initial states thus
reducing the initial choice and thus nondeterminism.

(RemT) allows for the removal of transitions if alternative transitions exist,
also reducing nondeterminism.

(AddT) allows the addition of transitions if so far no corresponding transi-
tions exist. Therefore the automaton gets more robust, because chaotic
behavior is replaced by an explicit description of behavior.
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(Arb) 7|l
(S’M’(S’I)
(S’M’(S’I)
(Reml) i I'C1I
(S’M’(S’I’) B
(S’M’é’:[) )
(RemT) 2 00 €0
3 VseS,meM. 6(s,m) = §’(s,m)

(8,M,6°,1) -

SMED T s s
(AddT) ﬁ Vse ,
s€S,meM. (6°\d) (s,m) = —d0(s,m)
(s,M,6,I)
(RemS) (S)’M’é’:[) reach(S,M,§,I) C S’ C S
2 6> = § N S’ xMxS’ xM*
(s’,M,6°,I)"
(8,M,4,1)
(AddS) S scs

(S”M’(S’I) B

(RefS) %— 0’={(s,m,t,out) | 6(a s,m,a t,out)}

(8,M,0,1I) a: S’ — S total, surjective
(s,m,8, 10l 7= {(s?,0ut) | (a(s?),out)€l}

Figure 3: Refinement rules

(RemS) allows for the removal of non-reachable states, where reach denotes
the set of reachable sets of an automaton.

(AddS) allows for the addition of new states.

(RefS) allows for the refinement of states. This way a single state can be
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refined into a more fine grained set of states.

As already mentioned, for the practical applicability of a refinement calculus
it is important that the applicability conditions of the refinement rules can be
checked automatically. If the state set and the transition set are both final,
as this is the case in description techniques for software engineering methods,
all the applicability conditions of all refinement rules can in fact be checked
automatically. However, the situation gets more complex if one uses a finite
representation of an automaton which has infinite state- and transition sets, as
this was the case in section 2.2. We will not study this further, however one
soon gets problems with the decidability of the applicability conditions. See
also [PR94] and [PR94b].

The refinement rules given in figure 3 leave the syntactic interface of a
refined component unchanged. In [R96] an extension to refine the interface of
an object is also given. It allows for extending the input and output set of
characters as well as refining one abstract character (such as a message name)
by a set of characters (such as the set of possible messages). It also may be
used to add further components to messages arriving at or emitted from an
object. Especially object-identifiers for identifying the receiver of a message
may be added. Thus object-identifiers may be left out if the abstract behavior
of an object should be modeled and only later be introduced if the object are
modeled more concrete for implementation purposes.

4.2 Refinement Example

In order to demonstrate the usefulness of our calculus, we now show a small
example for a development process where the behavior of objects is refined
step by step by the presented refinement calculus. In figure 4 the development
process of the behavior of objects of a class Figure is shown. In figure 5 the
continued development for subclass 2D—Figure is depicted. The development
is somewhat erratic (as it often is in practice), because it uses intermediate
development steps that do not contribute to the result, but are undone by
other development steps. This is due to our intension of showing all kinds of
refinement steps, their flexibility and their combined application within one
example. For simplicity, we do not model output within this example. How-
ever, it would be no problem to add output restrictions at any stage of the
development process.

Objects of class Figure represent objects shown on the screen. These ob-
jects may be selected and deselected by sending appropriate messages to them.
The development process shown in figure 4 of Figure-objects consists of the
following steps, corresponding to applications of the rules of our calculus:
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Step 1: (Arbitrary) select

Step 2: (AddS)

select

Step 3: (AddT) deselect, select
deselectﬁ

select
deselect deselect
Step 4: (RemT) [\ deselect, select
sel=Error
select

deselect deselect

Step 5: (RemS)

select

deselect deselect

Step 6: (Reml)

select
deselect\_/ deselect

Figure 4: Development of behavior of class Figure
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Step 1 : At the beginning of our development, we start with a very simple au-
tomaton: It has two states reflecting a selected and an unselected figure.
It has one transition modeling what happens if the figure object is sent
a select if it is not yet been selected. Both states are initially allowed.

Step 2 : We want to add transitions for a deselection, but what happens if
the figure is already deselected? We decide to introduce an additional
state, reflecting this error.

Step 3 : We now add deselect-transitions, leaving open whether deselect
results in an error or is just being ignored in the deselected state.

Step 4 : The customer wants a robust implementation of deselect. There-
fore, we remove the possibility to result in an error. Another alternative
would be to require the output of a warning message in the the left
deselect-loop.

Step 5 : The previously introduced error state is now superfluous and can be
removed.

Step 6 : In a last development step we decide that a newly introduced figure
is automatically selected and therefore remove one initial element.

The development for class Figure is now finished. It describes the behavior
of any object of this class, in terms of the state change according to a given
sequence of input messages.

The substitutability principle ([WZ88], [W90]) for objects now enforces the
inheritance of this automaton to all subclasses of Figure. This not only means
that the signature is preserved or extended, but that behavior is inherited in
some way. An automaton thus can be seen as an interface description which
may be viewed as a contract on which clients may rely on.

We now continue the development process by developing a class 2D—Figure,
which is a subclass of Figure. 2D—Figure in addition allows to fill and empty
its area. We start with the inherited automaton from class Figure:

Step 7 : We add transitions for filling end emptying selected 2D-figures. The
figures remain selected.

Step 8 : Filling changes the state of a 2D-figure. This is not modeled. There-
fore, we refine the in which a figure is selected into two states. This has
the effect, that every transition with source or destination in the unrefined
state is duplicated. This way, underspecification has been introduced.

Step 9 : We now remove some transitions to describe the behavior of £ill
and empty in more detail. In addition we model that a newly created
2D-figure is not filled.
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Step 7: (AddT) seloct

st |

deselect deselect ﬁll7 empty

Step 8: (RefS) ﬂ
no contents

deselect'_/ fill, empty
select fill, empty
fill, empty
Step 9: (RemT) and (Reml) elect

S

deselect

deselect

sel=True
filled cont.

a1

empty

select empty

Figure 5: Development of behavior of class 2D—Figure

The presented development steps should be sufficient to show that the re-

finement calculus can be applied to real application development problems,

and

that the rules of our calculus exactly reflect the development steps used for the
development of behavior descriptions. However, this small example also shows

that a rigid tool support is inevitable for larger example.

5 RELATED WORK

Recently, various approaches for formalizing methods of systems and software

development were given. Well known are the so-called ”meta-models”, o

rigi-

nating in the context of tool integration, (see [T89] and [HL93]). However, by
this ”models” almost only the abstract syntax of the description techniques is

captured. An overview of several projects concerning the integration of st

ruc-
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tured methods with techniques of formal specification can be found in [SFD92].
In [H94], the British standard method SSADM [AG90)] is formalized using the
algebraic specification language SPECTRUM [BFGHHNRSS93]. This work is
continued in the project SYsLAB [B94a]. It is the aim of this project to pro-
vide a scientifically founded approach for software- and system development.
SysLAB emphasizes the early phases (analysis, requirements definition, log-
ical design), prototyping, reuse, and code-generation. In the context of the
SysLAB-project, a multitude of description techniques have been formalized
up to now. Examples are entity-/relationship-diagrams ([H93], [H95]), data
flow techniques [N93a] or time sequence diagrams [F95]. The formalization
in most of these cases is based on a so-called mathematical system model or
on Focus, which have been presented in [RKB95] and [BDDFGW93]. This
mathematical system model, which is based on streams and stream processing
functions, is also the basis for this paper, and it is presented in the appendix.

The specialization of automata has been a research topic of some groups,
especially in the context of object oriented systems.

In software engineering methods ([RBPEL91], [CABDGHJ94] oder [SM92])
automata are used for the behavior modeling of systems and its components.
Due to the informal semantics of the description techniques used in these meth-
ods in general no guidance is given for determining the relationship of automata
of classes being in an inheritance-relationship.

Closely related to our approach is the work presented in [PR94]. However,
in [PR94] output actions are not considered and only one (powerful) refinement
rule is given. The semantic model of stream processing functions is not used.
First order formulae are used for expressing the pre- and postconditions of
transitions.

The work in [LW93], [AC93], [C93] is based on the basic principle of substi-
tutability, which has been presented in [WZ88] and [W90]. Here, substitutabil-
ity means that elements (objects) of a supertype can safely be substituted by
objects of a subtype. These approaches also study the specialization of behav-
ior in the context of subtyping, which is interesting if the behavior of methods
of objects is specialized by inheritance. The concepts developed in these ap-
proaches are partially integrated in some object-oriented languages, e.g. in
Modula-3 [CDGJKN92], [A93].

Nierstrasz uses finite automata in [N93] for typing objects. The automata
are used to model which messages are accepted by an object in which states.
This way, the type of an object not only contains information about the static
method interface, but also information about the sequences of possible method
invocations of a client. Moreover, Nierstrasz defines a subtype relation which
corresponds to a behavior specialisation. The subtype-relation is suitable for
sequential as well as for distributed, parallel communication. However, the
construction of the subtype-relations gets very complex, possibly due to the
underlying synchronous communication paradigm which is based on Milner’s
CCS [M89].
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A simpler refinement calculus which is based on asynchronous communica-
tion and an I/O-automaton approach is given in [BHS96]. There, input- and
output characters are not distinguished and only one character is allowed for
each transition. The semantics and the refinement rules are based on a trace
semantics.

In [PR94b] we studied how automata can be integrated in the algebraic
specification language SPECTRUM [BFGHHNRSS93]. There, an automaton is
viewed as a special notation for a logical axiom. This way, a visual description
technique is integrated in an axiomatic specification language, while the power
and flexibility of SPECTRUM is available in cases where automata can not be
used adequately. Examples where SPECTRUM can be applied are pre- and
postconditions, as they have also been used in this paper.

The translation process of automata, which have been developed in the de-
sign phase, in an implementation using current object-oriented programming
languages like C++ [S91] is error-prone. Therefore, in [R94] we used finite
automata the transitions of which are labeled with executable program frag-
ments and executable pre- and postconditions. This way, automata get part
of the programming language. The resulting language called C++STD contains
concepts of design and implementation and can therefore be viewed as a very-
high level programming language. For C++STD a prototypical implementation
exists.

6 CONCLUSIONS

We have presented an automata model for the design phase of object-oriented
software engineering methods. A denotational and an operational semantics
have been given, which correspond with each other. Because the denotational
semantics was based on stream processing functions, the refinement techniques
of stream processing functions could be used to define refinement rules for our
automata.

The example of a development process has shown that the presented set
of refinement rules is simple, flexible and powerful. Therefore, the refinement
rules seem to be well-suited for integration in commercial software engineering
methods- and tools.
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A STREAMS AND STREAM PROCESSING
FUNCTIONS AS A MODEL OF INTER-
ACTIVE SYSTEMS

Stream processing function provide an abstract model for information process-
ing systems and their components. Objects are modeled as components commu-
nicating asynchronously with their environment by the exchange of messages.
Objects have an input port for receiving messages from their environment, and
an output port for sending messages to their environment.

A.1 Streams

In our model, the behavior of an object is modeled by its runs, which describe
the relationship between the messages arriving at the input port of the object
and the messages sent on the output port of the object. We assume that for
each run the events on a port are totally ordered, which means that for two
different events always one temporarily precedes the other. This allows to
model the communication history on a port by a stream of messages.

A stream is a finite or infinite sequence of messages. If M denotes the set
of messages, M™ the set of all finite sequences of messages and M° the set of
all infinite sequences of messages, for the set of all streams over M, denoted by
M¥, the equation

MY =M*®UM*
holds.
We will use the following operations and relations:

e " MY x M¥ — M* denotes the concatenation of two streams, i.e. the
stream which is obtained by putting the second argument after the first.
The operator ~ is usually written in infix notation. We assume that

s E€E M>®=s"t =s,

holds, i.e. the concatenation of an infinite stream s with a stream ¢ yields
the stream s. ~ will also be used to concatenate a single message with a
stream.

o # : MY — (NatU {oo}) delivers the length of the stream as a natural
number or oo, if the stream is infinite.

o Filter : P(M) x M“ — M denotes the filter-function. Filter(N,s)
deletes all elements in s which are not contained in set V.

o ft: M“ — M delivers the first element of a stream if the stream has at
least one element, and is undefined if its argument is the empty stream.
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e 7t MY — MY removes the first element of a stream if the stream has at
least one element, and is undefined if its argument is the empty stream.

e C: M¥ x M“ — Bool is the prefix order between streams. mCn holds if
there exists an u such that m u = n.

Using streams, the communication history of an object can be represented
by a pair of streams of messages, where the first component represents the
input history of the object and the second component represents the output
history of the object.

A.2 Stream processing functions

The behavior of an object is modeled by a stream processing function mapping
a stream of input messages to a stream of output messages:

Behavior : M¥ — MY

However, not every function with this functionality represents an adequate
model of an object: In reality, it is impossible that at any point of time the out-
put depends on future input. To model this fact, we impose an additional math-
ematical requirement. We require stream processing functions to be monotone
with respect to to the prefix ordering on streams:

2Cy=Behavior(x)CBehavior(y)

An additional requirement, continuity, has also to be imposed on stream
processing functions as models of objects. We will not define continuity here,
but refer to [BDDFGW93]. All monotone and continues stream processing
functions are denoted by the function arrow .

While one stream processing function can be used to model a deterministic
agent, we also have to take into account nondeterminism. Nondeterminism
occurs during the development process due to underspecification, or during the
lifetime of an agent due to non-deterministic choice during the execution. In
our model, non-deterministic agents are modeled by sets of stream processing
functions.

Please note that all the above definitions can easily be extended to objects
with more than one input- or output port, see [RKB95] or [BDDFGW93].
While the model of stream processing functions could only be sketched here,
in these papers also more details are given.
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