
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Introducing Security Mechanisms after Initial
Development: the RAC Case Study

David Bettencourt da Cruz, Bernhard Rumpe, Guido Wimmel

�����
����	

��
�

TUM-I0306
Juni 03

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-06-I0306-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c�2003

Druck: Institut für Informatik der
Technischen Universität München

 1

Introducing Security Mechanisms
after Initial Development:

the RAC Case Study

David Bettencourt da Cruz,
Bernhard Rumpe,
Guido Wimmel

Software & Systems Engineering,
Technische Universität München

85748 Munich/Garching,
Germany

This technical report describes an incremental method that allows to
add security mechanisms to an existing, but insecure system, such as a
prototype or a legacy system. The incremental method is presented and
as a showcase its application is demonstrated at the example of a Web-
based information system.

 2

1 Introduction

Security is an extremely important issue in the development of distributed systems.
This applies in particular to Web-based systems which communicate over an open
network. Failures of security mechanisms may cause very high damage with finan-
cial and legal implications. Security concerns, both on the part of enterprises and
consumers, are one of the major reasons why new technologies such as E-
commerce or E-government are used very reluctantly.

Developing security-critical systems is very difficult. Security is a complex non-
functional requirement affecting all parts of a system at all levels of detail. To se-
cure a system, merely adding mechanisms such as cryptography in some places is
not sufficient. Whether a system is secure depends crucially on the complex inter-
play of its components and the assumptions about its environment. A single weak-
ness can compromise the security of the entire system.

Therefore, to make it possible to assess a system's security, highly sophisticated
collections of evaluation criteria have been developed, like the ITSEC security
evaluation criteria [1] or their recent successor, the Common Criteria (CC) [2]. For
example, for a system that is to be certified according to the CC, a comprehensive
security analysis must be presented and increasingly strict requirements (depending
on the chosen evaluation assurance level (EAL)) are put on the development proc-
ess and its documentation. However, the CC do not give any guidance on how to
fulfill these requirements during the development process.

Furthermore, many systems are developed initially without security in mind. Rea-
sons for that are that they were designed for a secure environment such as a local
network, that existing legacy systems are to be adapted, or because they were first
developed as a functional prototype. Retrofitting security into an existing system is
generally believed to be extremely hard to achieve, and it is in effect often advised
against doing so at all. In this article we report on the experiences of a Java project
where exactly this retrofitting was done after developing initial prototypes.
The RAC system is an Internet information system based on the "push" principle:
information is presented to the user on a client application ("pushlet") and updated
when necessary, without the user having to explicitly check for such updates. The
server regularly or on demand contacts the client for updates. The RAC system
was initially developed as a prototype without security functionality as its focus
was targeting to be production companies’ internal information systems.

 3

In this paper, we describe a method to carry out a security analysis of an existing
system and to introduce appropriate mechanisms to achieve high trustworthiness.
Our method is demonstrated at the example of the RAC system. It is based on a
combination of an evolutionary approach and a method suggested in [3]. We com-
ment on experiences and difficulties in adding security to an existing system, in
particular in the context of Web-based Java applications.

The paper is structured as follows. In Section 2, we introduce the RAC system. In
Section 3, our method is presented. Sections 4 gives an overview over the threat
analysis and determination of security requirements for the RAC system that re-
sulted from the presented method, and Section 5 describes the implementation of
the corresponding security functionality into the system. We conclude in Section 6
with a discussion of our experiences.

Related Work

The consideration of additional or changed requirements within the lifetime of a
system is one of the main aims of iterative processes, such as Boehm’s Spiral
Model [7]. Few works are available on the integration of security aspects into the
development process. In [3], Eckert suggests a top-down approach, which we used
as a basis for our work. A mapping of ITSEC security requirements to develop-
ment activities in the German V-Model 97 is given in [8]. [5] describes a lifecycle
process based on the evaluation assurance requirements of the Common Criteria, at
the example of a payment system. These processes are mainly tailored to the de-
velopment of new systems. Security aspects of distributed Java applications are
covered in detail in [9], but methodical guidance is missing there.

 4

2 The Web-based Information System RAC

The RAC system is an experimental prototype serving a variety of issues. On the
one hand it is an innovative concept that allows to study issues of component
based software, distribution, distributed development, independent deployment and
security. On the other hand, RAC was designed to address and improve some of
the main disadvantages of common browser-based information retrieval systems.
The RAC system is designed to serve the following purposes:

1. It is an information retrieval system that updates its information automatically.

2. The information presented is up to date. It may change in seconds only, such as
in stock information systems.

3. The system thus has an efficient communication mechanism, which includes
that it can be used over low-bandwidth communication lines (telephone) as
well as high-bandwidth ones.

4. The RAC client offers a multi-view, in the sense that it shows several different
pieces of information at the same time. This implies that the display concen-
trates on information presentation without overhead, such as banners.

5. The RAC system is configurable: so-called “pushlet” components can be
downloaded and added to the client’s view dynamically.

6. The pushlets can be combined from different sources in the net.

Figure 1 shows a typical layout of the RAC client with several pushlets being ac-
tive while there is still space to add more pushlets.

 5

Figure 1. RAC Client with Pushlets

The RAC system addresses a number of disadvantages identified by traditional
Web-based information systems:

1. If the users wanted accurate and up to date information in traditional Web-
based information systems, they would have to constantly reload the Web page,
unless the page itself used a polling mechanism forcing it to reload periodically.
This is particularly annoying, as it generates a lot of traffic. Furthermore, such
a page is created by the server and thus prevents multi-view.

2. Since http is a stateless protocol, session information could only be stored by
using cookies or encoding session-ids in the http address. Both were consid-
ered to be unsatisfying solutions.

3. Most of the information coming from the Web is overloaded with irrelevant
information like ads or unnecessarily detailed information. If a user wanted to

 6

follow information from several different pages he would constantly have to
switch between browsers, because all the information would never fit on the
screen.

The RAC-server is designed to push information to its clients whenever new in-
formation is available as shown in Figure 2. This ensures up to date information
and reduces traffic considerably.

Figure 2. The Overall RAC Architecture

The RAC-client basically consists of an empty window and the ability to dynami-
cally load pushlet components from local filesystems and through the Web. A
pushlet started by the user presents its information in a small window within the
main window. All of the control information (reload, register, unregister, …) is
handled uniformly within the main system. On the one hand this allows pushlets to
become very small components that can easily be loaded even through low band-
width communication lines. On the other hand the uniform presentation allows a
condensed presentation of valuable information and suppression of clutter. The

 7

pushlet presentation can be resized, dynamically added and removed and its pa-
rameters can be changed.

One client may connect to several servers. Servers provide the information shown
by the pushlet and the pushlet code itself. When a server is started, it loads its
available PushletServer-objects. The RAC-client then has to register its interest at
the server in one or several information categories. As soon as the client is regis-
tered, it will automatically be provided with all the data that the pushlet server of
interest generates, whenever new or changed information is available. The client
then passes the data to the corresponding pushlet, which is responsible for its
graphical representation. Since the connection between the registered client and the
server is kept alive, there is no difficulty in tracing the session and storing session
information.

 8

3 Method for Introducing Security Features

Early in the development, it was decided that the RAC system is to be developed in
increments (actually using an Extreme Programming like approach [11,12] that
was inspired from a survey [16] indicating a number of enhancements). Also based
on our experiences in building similar systems [13,14,15] it was decided to start
with several increments to build an efficient feasibility prototype without any secu-
rity mechanisms. Instead, any security considerations should be retrofitted into the
existing system in a later increment. We were well aware that this might make it
necessary to refactor parts of the code. The rest of the section sketches the main
steps of the iteration that add security to the existing insecure system, which will
then be illustrated in detail in the following sections.

The method used for adding security to the RAC system was based on existing
methodologies for developing new security-critical systems ([2], [3], [5]). It con-
sists of the following steps:

• threat analysis,
• threat classification,
• finding countermeasures,
• countermeasure classification,
• combining classification results.

During the threat analysis each and every possible threat to the system has to be
documented (threats are situations or events that may lead to unauthorized access,
destruction, disclosure or modification of data, or to denial of service). Obviously,
only threats that have been identified at this stage can later on be considered to be
countered. Therefore, it is important that the threat analysis is as complete as pos-
sible. Hence it is crucial to use a systematic approach to identify the threats. In case
of the RAC-System, threat trees [10] were used. The root of a threat tree consists
of all possible threats to a system. Its successor nodes correspond to more fine-
grained threat classes (which together make up all possible threats), and the leafs
consist of single threats or very small related groups of threats. There is some de-
gree of freedom in how the threats are decomposed, as long as no threats are lost
during the process. In a state-driven program, for example, the tree can first be
divided into the different states the program might reach. Each of those states can
then be further analyzed. In a distributed environment, a refinement into subtrees

 9

depending on the physical distribution (e.g. threats against system components and
threats against communication links) can be appropriate.

After having completed the search for the threats, the resulting threats are classi-
fied (1) by an estimate of the potential damage caused if the threat can be realized,
and (2) by an estimate of the effort it would take an attacker to realize the threat.
To allow for a systematic risk analysis, damage and effort are measured in a quanti-
tative metrics, depending on the use of the program. In programs with a commer-
cial use, money is mostly a good scale to choose. Other appropriate metrics are
necessary time, hardware or knowledge which can in turn again be represented by
money.

The next step to take is to find countermeasures against each of the identified
threats independently of how they have been classified. Fortunately, quite a number
of standard security techniques, patterns and concepts [3,4] that provide counter-
measures against most of the major threats already exist. At this step the counter-
measures found against the threats do not yet have to be worked out in great de-
tail. Providing a basic idea is usually enough to be able to classify them in the next
step.

The classification of the countermeasures is carried out in a way similar to the way
used in threat analysis. For this classification, the effort needed to realize a coun-
termeasure is estimated. Again the classification is based on a metrics and thus
allows comparison. Ideally the metrics used is the same as the one used for threat
classification, since that would ease the following combination of all classifications.

Finally the results from these classifications are combined to identify which threats
should be dealt with. This largely depends on the available budget and the level of
security that must be reached. This procedure will result in the functional security
requirements, which then can be used as if they were traditional requirements and
implemented. As a specialty, we found that these so called “requirements” usually
go deep into design activities and thus combine analysis and design phase. In this
respect, we deviate from the strictly sequential approach suggested in [3]. Post-
poning the decision which threats should be countered to the point after the as-
sessment of corresponding countermeasures adds a little overhead. But it is easier
in our case as there is already an implemented system available and it leads to a
more effective selection of security measures within the given time/budget.

 10

4 Threat Analysis and Security Requirements

Since RAC is a rather classic client-server system, the threat tree was first divided
into the components Client, Server and Internet. The threats that affect the server
are divided into three categories (see Figure 3). The categories are threats originat-
ing from RAC itself, threats originating from the pushlet servers, and threats that
originate from outside the RAC system.

Figure 3. Server Threat Tree with Threat Classification

Many threats originating from outside the RAC-system are similar as in other Web-
based systems and can be countered by well-known security patterns such as the
use of a firewall. However, threats coming from the pushlet servers may be a seri-
ous problem, since pushlet servers are dynamically loaded and can contain third-
party code. For sake of space, we therefore focus on the threats that originate from
the PushletServer objects (T.S.PS). These threats were further divided into threats

Threats originating from
the RAC system

T.S.INT

D=1; E=3

Confidentiality
T.S.PS.RAC
.DATA.CONF

D=3; E=3

Integrity
T.S.PS.RAC

.DATA.INTEG

Other pushlets data
T.S.PS.RAC.DATA

D=3; E=0

Availability
T.S.PS.RAC.AVAIL

Threats to the RAC system
T.S.PS.RAC

D=2; E=0

Confidentiality
T.S.PS.SYS.CONF

D=4; E=0

Integrity
T.S.PS.SYS.INTEG

D=3; E=0

Availability
T.S.PS.SYS.AVAIL

Access to the hosting system
T.S.PS.SYS

Threats originating from
PushletServer components

T.S.PS

External threats
T.S.EXT

Threats affecting the server
T.S

 11

to the hosting system (T.S.PS.SYS) and threats to the RAC-system itself
(T.S.PS.RAC).

The threats affecting the RAC-system are either threats to the confidentiality and
integrity of the data belonging to other pushlets (T.S.PS.RAC.DATA.CONF,
.INTEG) or to the availability of the whole system (T.S.PS.RAC.AVAIL). The
confidentiality (CONF), availability (AVAIL) and integrity (INTEG) of the hosting
system could also be corrupted by the PushletServer objects.

Table 1 shows how the effort for an attacker to realize a threat is classified. Ac-
cordingly, Table 2 classifies the damage caused by the threats by extra costs caused
by the damage. Both tables are grouped into six classes {0..5}.

Since the RAC system was initially developed neglecting any security issues, the
effort an attacker needs to accomplish threats T.S.PS.SYS and
T.S.PS.RAC.AVAIL is nearly zero. Nevertheless the effort for the threats affecting
the confidentiality and integrity of the other pushlets’ data
(T.S.PS.RAC.DATA.CONF, .INTEG) is not zero, because Java does not allow
direct access to memory and therefore protects the data of other pushlets (for de-
tailed information on Java security, see [9]).

Table 1. Classification Scheme of Attacking Effort

 Rating Time needed Money needed Skills needed
0 < 1 Hour < 100 EUR Basic IT skills
1 < 1 Day < 500 EUR Basic knowledge of the RAC

system
2 < 1 Week < 1.000 EUR Average knowledge of the RAC

system
3 < 1 Month < 5.000 EUR Good IT skills or good knowl-

edge of the RAC system

4 < 6 Months < 10.000 EUR Very good IT skills or very good
knowledge of the RAC system

5 > 6 Months > 10.000 EUR Excellent IT skills or excellent
knowledge of the RAC system

 12

Table 2. Classification Scheme of Damage

 Rating Extra costs through damage
0 0 EUR
1 < 500 EUR
2 < 1.000 EUR
3 < 10.000 EUR
4 < 100.000 EUR
5 > 100.000 EUR

Some knowledge of RAC is needed to access that data, thus the effort was given
class three. The damages caused by a denial of service attack to both RAC and the
hosting system (T.S.PS.RAC.AVAIL, T.S.PS.SYS.AVAIL) are equal, since it is
assumed that the hosting system is only used to run RAC. The evaluation of three
(critical) is given, because a denial of service-attack can result in high costs. If the
integrity of the system (T.S.PS.SYS.INTEG) is attacked, the costs can become
very critical (four). If the operating system does not provide sufficient protection it
may even be possible to delete a whole database. On the other hand, the confiden-
tiality of the system (T.S.PS.SYS.CONF) is not as costly if compromised, as the
system only hosts the RAC program. Of course this value must be adapted if RAC
is used to run pushlets which store important data on the server side. Compromis-
ing the confidentiality of other pushlets’ data (T.S.PS.RAC.DATA.CONF) is re-
garded as harmless, whereas compromising the integrity
(T.S.PS.RAC.DATA.INTEG) may already be critical, since changing pushlet data
may result in the pushlet not working anymore or even worse result in the pushlet
displaying incorrect information.

As a next step, countermeasures were provided for all identified threats. The classi-
fication of the countermeasures is again measured primarily against a money met-
rics. Two other important metrics were the time needed to implement such a coun-
termeasure and the difference the implementation would make to the performance
of RAC. Table 3 shows the values used to classify the countermeasures.

 13

Table 3. Classification scheme for countermeasures

 Rating Costs Time
needed

Difference in performance

0 < 100 EUR < 1 Day No difference
1 < 500 EUR < 2 Days Almost no difference
2 < 1.000 EUR < 1 Week Small difference
3 < 10.000 EUR < 1 Month Bearable difference
4 < 100.000 EUR < 1 Year Great difference
5 > 100.000 EUR > 1 Year Unbearable difference

A Java Sandbox is used as countermeasure against the threats T.S.PS.SYS.CONF
and T.S.PS.SYS.INTEG to prevent any access to the hosting system. The Java
Sandbox is an access control mechanism which is quite easy to introduce as long as
the program is kept modular. Through good design this was the case in the RAC
system. As RAC was designed in a very modular way, this solution was classified
as relatively inexpensive with the value three.

The threats T.S.PS.RAC.AVAIL and T.S.PS.SYS.AVAIL can be countered by
using a good scheduling system, which would have to control the access to the
system resources. This scheduling system has to be built for the RAC system spe-
cifically, which results in high developing costs (value: four). Providing a counter-
measure against the threats T.S.PS.RAC.CONF and T.S.PS.RAC.INTEG requires
a detailed revision of the access groups (public, protected, package and private),
eventually a restructuring of the object hierarchy and possibly an adaptation of
RAC objects in the Java Sandbox. The costs for such a solution would again be
relatively high compared to the existing resources.

The steps described above for server threats were applied to all of the threats iden-
tified for the RAC-system. The result was a table with values of damage, effort and
solution effort for each threat to the RAC system. These values were combined to
find the security requirements and the priority of these requirements. In the combi-
nation of the damage, effort and solution effort classification, a priorization accord-
ing to the actual project situation (tight iteration schedule, limited resources, but
more iterations to come) was used to select a subset of countermeasures for the
implementation in that iteration.

 14

5 Implementation of Security Mechanisms

The evaluation of the results from all previous classification steps led to the con-
clusion that for the given circumstances there were three countermeasures to
threats that were most important to be implemented given the tight time/budget
restrictions:

• To integrate a Java Sandbox into the RAC server, to isolate the PushletServer
from the hosting system.

• To integrate a Java Sandbox into the RAC client, to analogously isolate the
Pushlets from the client system.

• To introduce a mechanism to secure the communication between the RAC cli-
ent and the RAC server. The mechanism chosen was to introduce the possibil-
ity of using an SSL secured channel for communication.

All three solutions have been added to the RAC system within one iteration. They
can easily be configured as needed. The Java Sandboxes were configured following
the “need-to-know”-principle [17]. This means that every component is only al-
lowed access to the resources it needs to operate properly. Changes to these re-
strictions can be made at any time within the policy files that control the Java
Sandbox. Whether the communication between the RAC-server and the RAC-
client is SSL-secured or not depends on the method call within the pushlet (see
Figure 4).

 15

Figure 4. Implemented Security Components

The reason for this is that cryptographic details should be hidden from the user, yet
not all pushlet data needs to be encrypted. Hence the developer of the pushlet has
to decide whether the data being exchanged should be protected from outside ac-
cess.

Since automated tests were already available from prior iterations, these tests were
used as regression tests to certify that the functionality of the program had not
been affected by the new security components. Additional tests had the purpose of
verifying that the security mechanisms had been implemented properly and actually
serve to counter the identified threats. Without going deep into testing details, we
want to note that e.g. tests cannot only serve to check whether functionality still
works, but also whether certain threats are indeed tackled. E.g. a test pushlet can
try to surpass a sandbox, or a communication can be subjected to a man in the
middle attack. These kinds of tests greatly improve the confidence in the proper
implementation of the measures taken.

 16

6 Discussion

In this paper, we described a method to retrofit security into an existing system.
We presented the Web-based information system RAC, which was implemented in
an incremental way using a Java architecture, without at first considering security
aspects. We demonstrated our approach by showing how we integrated security
features into the RAC system.

This part of the approach is based on a standard, step-wise process primarily de-
signed for implementing new security-critical systems. It turned out that the initial
steps, the threat analysis and classification, could be taken over fairly directly. They
were even facilitated considerably by the fact that a running version of the system
was already available and there was no uncertainness about its functionality. Avail-
able automated tests also greatly improved confidence that the changes made have
been correct.

Specifying and assessing countermeasures is more difficult, as the design of the
existing system must be taken into account. If the countermeasure against a threat
cannot be assigned to a small, modular or easily separable part of the program, it
becomes much harder to retrofit. Choosing a “good” architecture (which does not
necessarily have to be security specific) can even serve to counter some of the
threats without additional implementation effort, as it is the case for modular Java
applications with the built-in access control mechanisms and Java’s protection
mechanisms against implementation-level attacks such as buffer overflow.

In our approach, the choice of the countermeasures that should be implemented is
based on both an assessment of the threats and of the countermeasures. This was
only possible with reasonable time and effort because an implementation and auto-
mated tests were already available. Based on this information, the most effective
security functions given particular time/budget constraints for their implementation
can be selected. The existing tests could be re-used to verify that the program’s
functionality has not been affected, and additional tests for the security functional-
ity could be added. Finally, it is important that the existing software is well docu-
mented. Otherwise the threat analysis becomes hard to carry out.

We believe that Java is to date the most appropriate architecture for information
systems where security might become important after some iterations, because of
its built-in security features. However, there are also problems. Firstly, the Java

 17

Sandbox does not implement the principle of complete mediation [17]. It usually
only checks for correct access when a protected object is created. Further use of
the object works independently of the Sandbox, thus enabling attackers to gain
access to the object through the program. Secondly, if the program is not strictly
modularized, the Sandbox becomes much harder to introduce, and restructuring
might become necessary to be able to use the access modifiers (private, protected,
public).

If the mentioned points are considered, a certain level of security can be actually
retrofitted into an existing software without great overhead.

Acknowledgements

We would like to thank Roger Rosette, Ansgar Haase, Christopher Lewis, Alexan-
dra Remptke and Martin Winter for helping to develop the RAC system. This work
was partially supported by the Bayerisches Staatsministerium für Wissenschaft,
Forschung und Kunst and through the Bavarian Habilitation Fellowship and the
German Bundesministerium für Bildung und Forschung through the Virtual Soft-
ware Engineering Competence Center (ViSEK).

 18

References

[1] ITSEC. Information Technology Security Evaluation Criteria – Harmonised
Criteria of France, Germany, the Netherlands, the United Kingom, May 1990.
Version 1.

[2] Common Criteria for Information Technology Security Evaluation, Version
2.1. Technical report, 1999. URL: http://www.commoncriteria.org/
docs/index.html

[3] C. Eckert. IT-Sicherheit (in German). Oldenbourg Verlag, 2003.

[4] R. Anderson: Security Engineering: A Guide to Building Dependable Distrib-
uted Systems. Wiley, 2001.

[5] Monika Vetterling, Guido Wimmel, Alexander Wißpeintner. Secure Systems
Development Based on the Common Criteria. 10th International Symposium
on the Foundations of Software Engineering (FSE-10), 2002.

[6] IABG. V-Modell 97, 1999. URL: http://www.v-modell.iabg.de/

[7] B. Boehm. A Spiral Model of Software Development and Enhancement. IEEE
Computer, vol. 21, #5, May 1988.

[8] IABG. SEC: Using the V-Model and the ITSEC. Part 3 of [6].

[9] Li Gong. Inside Java 2 Platform Security: Architecture, API Design, and Im-
plementation. Addison-Wesley, 1999.

[10] E. G. Amoroso. Fundamentals of Computer Security Technology. Prentice
Hall, 1994.

[11] K. Beck. Extreme Programming Explained. Addison-Wesley, 1999.

[12] B. Rumpe. Extreme Programming – Back to Basics? In: Proceedings of Mod-
ellierung 2001, 28.-30.3.2001 Bad Lippspringe. G. Engels, A. Oberweis, A.
Zündorf (eds.). Lecture Notes in Informatics, Band 1, GI-Edition, Bonn.
2001.

[13] B. Rumpe. Online Auctions (lessons learned from strategic E-Business con-
sulting). In: Issues & Trends of Information Technology Management in Con-
temporary Associations, Seattle. Idea Group Publishing, Hershey, London,
pp. 682-686. 2002.

[14] M. Fontoura, W. Pree, B. Rumpe: The WebShop E-Commerce Framework.
International Conference on Internet Computing. June 25th - 28th, Nevada,
USA. CSREA Press, 2001.

 19

[15] B. Rumpe, G. Wimmel. A Framework for Realtime Online Auctions. In: Man-
aging Information Technology in a Global Economy - Proceedings of IRMA
International Conference, Toronto. Idea Group Publishing, Hershey, London,
2001.

[16] B. Rumpe, A. Schröder. Quantitative Survey on Extreme Programming Pro-
jects. In: Third International Conference on Extreme Programming and Flexi-
ble Processes in Software Engineering, XP2002, May 26-30, Alghero, Italy,
2002.

[17] J.H. Saltzer, M.D. Schroeder. The Protection of Information in Computer
Systems. Proceedings of the IEEE 63, 9, 1975.

