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Abstract

The Unified Modeling Language UML is a language for specifying, visualizing and
documenting object-oriented systems. UML combines the concepts of OOA/OOD,
OMT and OOSE and is intended as a standard in the domain of object-oriented
analysis and design. Due to the missing formal, mathematical foundation of UML
the syntax and the semantics of a number of UML constructs are not precisely defined.
This paper outlines a proposal for the formal foundation of UML that is based on a
mathematical system model. It also compares UML with the method SLM developed
in the SysLab project. In the design of SLM special care has been given to the
mathematical foundation.

*This paper partly originates from a cooperation of the DFG project Bellevue and the SYSLAB project,
which is supported by the DFG under the Leibniz program, by Siemens-Nixdorf and Siemens Corporate
Research.
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1 Introduction

The Unified Modeling Language [2] is a set of description techniques suited for specifying,
visualizing and documenting object-oriented systems. The language has been developed
by G. Booch, J. Rumbaugh and I. Jacobson since October 1994 and combines the concepts
of OOA/OOD [1], OMT [25], and OOSE [17], as well as a number of ideas from other
methods and description techniques like Harel’s statecharts [14].

In January 1997 UML has been submitted to OMG as a proposal for a standard notation
of object-oriented analysis and design techniques [2]. Currently, UML focuses only on
notation. Method and process issues are outlined, but not dealt with in detail. However,
it is stated that the process is to be use-case driven, architecture centric, iterative and

incremental (Summary of [2], p. 7). In our work, we refer to the most recent UML version
1.0.

Like other software engineering methods UML provides a set of “intuitive” graphical and
textual description techniques that are supposed to be easily understandable for both
system developers and expert users working in the application domain. However, often
the exact meaning of such description techniques is not clearly defined. As a consequence,
the usage of those techniques and, correspondingly, the interpretation of models developed
may differ considerably. Furthermore, without exact semantics, checks for completeness
and consistency cannot be precisely defined, let alone supported by a tool. Quite often, the
models emerging during system development have severe shortcomings, which inevitably
lead to erroneous software systems. Therefore, the high effort spent on modeling not always
yields software systems of high quality.

In order to ensure the correct usage of description techniques in modeling, and to enable
tool supported consistency checks, the definition of a precise semantics of the notations
involved is crucial. The semantics defines the exact meaning of description techniques in
an unambiguous way. Furthermore, the formal framework serves as a basis for defining the
interconnections between different notational concepts and different stages of design. Last
but not least a semantic foundation checks the soundness of the description technique and
thus may lead to an improvement of the description technique itself.

Having recognized the importance of a formal foundation, the UML developers already
have made first attempts at a formal semantics definition. In the language documentation a
metamodel for UML concepts is presented. The metamodel itself is given in UML notation
by a class diagram and annotations in prose. This approach to a formal semantics of UML
brings about several difficulties.

First, the semantics of class diagrams is not precisely defined itself. For example, the usage
of aggregation is a frequently discussed topic. Consequently, class diagrams provide a very
weak basis for defining a formal semantics.

Second, the use of class diagrams limits the semantics definition to a description of static



relationships between UML concepts. As a documentation of the structure of diagrams,
the UML metamodel contains valuable information for tool developers who have to handle
storage and retrieval of diagrams. However, there exists no interpretation that models the
dynamic aspects of system behavior in an appropriate way. Thus, the metamodel is not
sufficient as a formal semantics definition of UML concepts. As far as we know, also the
novel approaches to a semantics definition pursued by the UML developers [20] do not
overcome this deficiency.

Our approach to the formal foundation of UML is based on the well-studied and established
mathematical theory of streams and stream processing functions [5]. Streams have proved
to be an adequate setting for the formalization of the semantics of concurrent systems.
In order to model the static and dynamic properties of an object-oriented system in a
structured way, we augment the mathematical framework by the notion of system model.
A system model characterizes an abstract view of the systems under development. It both
describes the static structure of objects and their behavior over time. The idea of a system
model is advantageous for several reasons.

First, a system model provides an integrated view of a system. This is particularly impor-
tant as the UML description techniques allow us to define only partial views of a system.
The semantic mapping of partial syntactical system views to an overall mathematical sys-
tem view has the advantage that relationships between different description techniques can
be studied in a homogeneous setting.

Second, the concept of system models establishes an auxiliary layer on top of the basic
mathematical theory. In this semantic layer object-oriented notions like objects, object
identities and object states have a direct correspondence to mathematical concepts in the
system model. Thus, the use of a system model helps us to increase the readability and
understandability of the semantics definition considerably.

For the semantics definition we employ our experience gained during the SYSLAB project.
In SysLAB the formally founded analysis and design method SLM has been developed
covering description techniques similar to those of UML [18, 13, 12, 15, 22, 30].

Thus on the one hand we outline the basic ideas and the overall structure of the formal
foundation of UML. This foundation revealed several language features which are not yet
fully clear. We discuss some of these aspects in the respective sections.

On the other hand we compare the description techniques of SLM and UML. This com-
parison yields several similarities. However, it also shows the stronger coherence of SLM
due to the emphasis on the formal foundation.

The paper is organized as follows: In Section 2 we give a short overview of the basic
modeling concepts of UML. In Section 3 we present a proposal for the formal foundation
of UML. The subsections of Section 3 focus on the overall mathematical system view and
on the different description techniques UML offers. The comparison with SLM is given in
Section 4. Section 5 contains a summary and our conclusions.



2 A Short Overview of UML

In the following we give a short sketch of the basic UML description techniques:
e class and object diagrams,
e use case diagrams,
e sequence diagrams,
e collaboration diagrams,
e state diagrams and
e activity diagrams.

Note that we concentrate on those models and description techniques that are relevant for
describing the structure and behavior of systems. Therefore, we omit the implementation
diagrams (component and deployment diagrams), which are helpful for modeling the phys-
ical structure of a system only. Furthermore, we focus on basic concepts, but omit some
more advanced modeling features which are beyond the scope of this work. For a detailed
description of UML we refer to [2].

Class and object diagrams: A class diagram describes the static structure of a system,
consisting of a number of classes and their relationships. A class is a description of a set of
objects and contains attributes and operations. An object diagram is a graph of instances.
A static object diagram shows the detailed state of a system at a certain point in time,
whereas a dynamic object diagram, also called collaboration diagram, models the state of
a system over some period of time.

Structural relationships between objects of different classes are represented by associa-
tions (the instances of associations are called links). The definition of associations may be
enhanced by attributes, association classes, role names and cardinality (multiplicity). Gen-
eralization represents the relationship between superclasses and subclasses, i.e. between a
more general class and a more specific class. Thus, the specific class is fully consistent
with the superclass and adds additional information. Aggregation, which is a concept
of OMT, is a special form of binary association representing the whole-part relationship.
Composition is a form of aggregation for n-ary associations, which implies strong ownership
and coincident lifetime of a part with the whole. For structuring complex systems, class
packages are introduced, which are groupings of class model elements and may be nested.

The use case diagram captures Jacobson’s use cases. A use case diagram shows a
collection of use cases and external actors that interact with the system. A use case
describes the interactions and the behavior of a system during an entire transaction that
involves several objects and actors. Within a use case model, relationships between use



cases can be modeled, i.e. a use case can include other use cases as part of its behavior
description. The specification of the external behaviour of a use case may be given by
a state diagram. The implementation of a use case can be described by a collaboration
diagram.

Since the use case diagram is strongly connected with the development process, we omit it
in the current stage of our semantics definition.

Sequence diagrams, called interaction diagrams in OOSE, show patterns of interactions
(i.e. the sending of messages) among a set of objects in a temporal order. In addition, a
sequence diagram may show the lifelines of the objects involved in the interactions.

Collaboration diagrams are similar to object diagrams in OOA/OOD and describe the
collaboration between objects. Collaboration diagrams depict objects and links between
them. Links visualize the message flow between the corresponding objects. Messages may
have an argument list and a return value. Message ordering in the overall transaction
is described by a modified Dewey decimal numbering, specifying the sequential position
of a message within its corresponding thread. A composite object is an instance of a
composite class which implies the composition aggregation betweeen the class and its part.
Parameterized collaborations represent design patterns that can be used repeatedly in
different designs.

State diagrams, based on the statecharts by Harel [14], are similar to the state-machine
diagrams used in OOA/OOD and OMT. They describe the reaction of an object, in reply
to events received, in form of responses and actions. State diagrams basically consist of
states and state transitions. A state represents a condition during the existence of an
object in which it waits for an event to be received, performs some action or satifies some
condition.

An event is an occurrence that may trigger a state transition. Examples for events are
the receipt of an explicit signal, and the call upon an object’s method. State transitions
describe which events an object can receive in a particular state and which state the object
adopts after the reception of the event. The sending of events to other objects is part of
the transition.

An additional concept in state diagrams are atomic and non-interruptible actions, which
are connected to a transition. An action is executed when the corresponding transition
fires. It is also possible to invoke internal “do” actions that are carried out within a state
and take time to complete. An internal action is initiated when the state is entered and
can be interrupted by an event that triggers a state transition.

Timing conditions on the behavior of an object can be introduced by transition times that
are associated with a transition to specify the time at which the transition is to fire. Like



in statecharts, nesting of states is specified by introducing concurrent or mutually exclusive
disjoint substates.

Activity diagrams are a special case of state diagrams that are to be used in situations
where most of the events represent the completion of internally-generated actions. Thus,
the behavior is dominated by internal processing. In contrast, state diagrams are to be
used for situations where mainly asynchronous events occur.

An essential feature of UML is the concept of stereotypes. Stereotypes are used for
classifying modeling elements, thus allowing the user of UML to extend the semantics of
the metamodel and to adapt the predefined notational concepts of UML to specific needs.
For the evolution of a design the refinement relationship associates two descriptions of
the same thing at different levels of abstraction. Refinement includes, among others, the
relation between an analysis class and a design class.

3 A Proposal for the Formal Foundation of UML

This section represents a proposal for a formal foundation of UML. First, we describe
our approach to a formalization and introduce the mathematical system model that is
used to give an integrated underlying formal semantics for all description techniques of
UML. Then, we describe how the semantics of the description techniques of UML can be
formalized with respect to the system model.

3.1 Roadmap to Formalization

In the introduction we have motivated, why a formalization of UML description techniques
is useful. We argued that a precise semantics is important not only for the developer, but
also for tool vendors, methodologists (people that create the method) and method experts
(people that use the method and know it in detail).

Thus, we get the following requirements for a formalization:
1. A formalization must be complete, but as abstract and understandable as possible.

2. The formalization of a heterogeneous set of description techniques has to be inte-
grated to allow the definition of dependencies between them.

This does not mean that every syntactical statement must have a formal meaning. Anno-
tations or descriptions in prose are always necessary for documentation, although they do
not have a formal translation. They may eventually be translated into a formal description
or even into code during software development when the system model is further refined.



To manage the complexity of formalization, a layer between syntactic description tech-
niques and pure mathematics is introduced, as depicted in Figure 1. The pure mathematics
is only used to define the system model. This system model is then used as an integrated
underlying semantics for all description techniques.

As a further advantage, the system model explicitly defines notions of software systems in
terms of mathematical concepts, e.g. object identifiers and messages. In contrast to the
more implicit semantics of many other approaches, this leads to a better understanding of
the developed systems.

Sequence diagrams Class descriptions

class Account ;

g2 R ),
Qebit(arint, dsAccount)s

Class diagrams \ / State diagrams
e
% System Model
Mathematlcs Formal Foundation

Figure 1: Layered formalization of description techniques



The system model formally defines a notion of a system that obeys the properties defined
in Section 3.2. A document of a given description technique is defined by relating its
syntactic elements to elements of a system, such as the existing set of classes, or other
structural or behavioral entities. The semantics of a document is then given by a subset
of the system model. This subset of the system model consists exactly of all systems that
are correct implementations of the document.

To use a set of systems and not a single one as the basis of the proposed semantics has
several advantages. For example, refinement of documents corresponds to set inclusion.
Furthermore, we get the meaning of different documents modeling different aspects of the
system by intersection of their respective semantics. But the main reason is that, in contrast
to fully executable programming languages, description techniques allow underspecification
of system properties in many different ways. A proper semantics thus cannot be captured
by a single system. For the same reason, it is not possible to give an operational semantics
in the sense that a document specifies a single abstract machine that “executes” it.

3.2 System Model

The system model described below is a refinement of the SysSLAB system model as pre-
sented in [18], [28] and [11]. Each document, for instance an object diagram, is regarded as
a constraint on the system model. The system model provides a common basis to define an
integrated semantics of all description techniques. On this basis, notions like consistency
and refinement of documents can be precisely defined.

The system model introduced below is especially adapted to the formalization of UML.
Thus, relevant aspects of UML like classes, objects, states, messages etc. are explicitly
included. A precise formalization of our UML system model is currently under development
in [16].

Formally, the system model is a set of systems. A system is formally described by a tuple
of elements that describe various aspects of the system, such as the structure and the
behavior of its components as well as their interaction. In the following, we describe the
most important elements of a system with identifier sys.

The structure of a system is, according to object-orientation, given by a set of objects, each
with a unique identifier. Therefore, we regard the enumerable set ID of object identifiers
as an element of the tuple sys.

In the system model objects interact by means of asynchronous message passing. Asyn-
chronous exchange of messages between the components of a system means that a message
can be sent independently of the actual state of the receiver. Asynchronous system models
provide the most abstract system models for systems with message exchange, since dead-
lock problems as in synchronous systems do not occur. Note that synchronous message
passing can be modeled by using two asynchronous messages, a “call” and a “return”. To



model communication between objects we use the theory of timed communication histories
as given in [6]. The notion of explicit time in the system model allows us to deal with real
time, as proposed in UML.

We regard our objects as spatially or logically distributed and as interacting in parallel.
As described in UML, sequential systems are just a special case, where always exactly one
object is “active”.

O

& i/[eg)sage
N communication medium
ystem sYs

Figure 2: Objects in the UML system model

Interaction between objects occurs through the exchange of messages, as shown in Figure
2. Let MSG be an element of sys, denoting the set of all possible messages in a system.
Each object with identifier «d € ID has a unique set of messages it accepts. Its input
interface is defined by

msg,; € MSG

The behavior of an object is the relationship between the sequences of messages it receives
and the sequences of messages it emits as a reaction to incoming messages. We allow our
objects to be nondeterministic, such that more than one reaction to an input sequence is
possible.

According to [5, 9], the set of timed communication histories over M is denoted by M®.
Each communication history contains as information the time unit in which a message
occurs, as well as a linear order on the messages it contains. A communication history
thus models the observable sequence of incoming or outgoing messages of one object. The
behavior of a nondeterministic object ¢d is then given by the mapping of its input stream
to the set of possible ouput streams. Thus, the behavior of an object id is given by the
relation between its input and output streams

behavior;y C msg?; x MSG®

Objects encapsulate data as well as processes. FEncapsulation of data means that the state
of an object is not directly visible to the environment, but can be accessed using explicit
communication. Encapsulation of process means that the exchange of a message does not
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(necessarily) imply the exchange of control: each object can be regarded as a separate
process. Given the set of possible states STATE of objects in a system, the function states
assigns a subset of possible states to every object:

states;g € STATE

Furthermore, a state transition system is associated with each object, modeling the con-
nection between the behavior and the internal state of an object. We use a special kind of
automata [13] for this purpose.

Such an automaton of an object id consists of a set of input messages msg,,, a set of output
messages MSG, a set of states states;y, and a set of initial states states), C states;s. The
nondeterministic transition relation d;; defines the behavior of the automaton. From the
state-box behavior, given for the automaton in terms of state transitions, the black-box
behavior in terms of the behavior-relation can be derived (cf. [13]).

Messages are delivered by a communication medium, which is an abstraction of message
passing as it is done in real systems by the runtime system of the programming language
or by the operating system. The communication medium buffers messages as long as
necessary. Each message contains the receiver’s identifier, so that the communication
medium is essentially composed of a set of message buffers, one for each object. The order
of messages between two particular objects is always preserved by the communication
medium. The contents of messages are not modified. Messages cannot be duplicated or
lost. No new messages are generated by the communication medium. This is formalized
in [11].

Objects are grouped into classes. We assume that each system owns a set CN of class
names. CN may, for instance, be derived from UML class diagrams. In object-oriented
systems, each object identifier denotes an object that belongs to exactly one class. This is
represented by the function

class: ID — CN.

Classes are structured by an inheritance relation, which we denote by . C . (read: “subclass
of”). The inheritance relation is transitive, antisymmetric and reflexive, as usual. With
every class ¢ € CN a signature X, is associated, containing all attributes and methods
together with their argument and result types. The signature induces a set of input mes-
sages for each object of the class. One impact of inheritance is that signatures are only
extended: cCd= ¥,; C X..

Another distinguishing feature of object-orientation is the dynamic creation of objects.
Deletion need not be modeled, as we assume that our objects are garbage collected in the
usual way. However, we may define a special finalize()-method that may be used to clean
up objects, as, for instance, in Java. Initially, a finite subset of objects (usually containing
one element) exists and is active. We regard objects to be created and to be active after
having received a first message. Thus, the creation of a new object essentially consists of
a message transmission from the creator to the created object. To allow this, each object

11



is equipped with a sufficiently large (usually infinite) set of object identifiers denoting the
set of all object identifiers the object may create:

creatables : ID — P(ID)

To prevent multiple creation, these sets of identifiers have to be pairwise disjoint, and
objects that are initially active are not creatable at all.

3.3 Class and Object Model

Class and object diagrams describe the static structure of a system. The origin of class
diagrams are E/R diagrams, which have been successfully applied for years in database
design. Although class diagrams are widely accepted in practice, the straightforward adap-
tation of E/R diagrams to an object-oriented context (through the correspondence entity
= object) leads to deep semantic problems, since a number of features in E/R diagrams
have no exact interpretation in the object-oriented setting. Below, the main concepts and
problems of class and object diagrams in UML are summarized, and their mapping to the
system model is sketched.

Classes and Objects

Intuitively, a class ¢ in an UML class diagram describes a set of objects. This is reflected
in our system model by three aspects. First, the methods and attributes of class ¢ describe
the syntactical interface of all objects belonging to that class. This syntactical interface
defines the signature Y. as given in the system model. Second, the state space of the
objects of class ¢ is determined. The state of an object is structurally determined by the
attributes of the class and may contain both basic values (like integers or strings) and
identifiers of other objects. The set of all states of objects of class ¢ is denoted by states;y.
Third, a subset ID, of the set ID of all identifiers is defined, although only implicitly by
stating |ID,| = () for abstract classes, resp. |ID.| = oo for others. The set ID, is the set of
all identifiers of objects of class ¢, subclasses not included.

A class diagram describes the object structure of the system to be developed. In this
respect, the semantics of the whole class diagram is the set of possible system states. A
system state consists of the state of all objects that exist at some point in time. Formally,
we describe a system state by an indexed family {s;q : id € ID, s;q € states;q}.

Associations
Associations between classes in UML are supported in various other object-oriented analy-

sis methods and originally come from the notion of relationship types in the entity /relation-
ship approach.
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The system view of E/R modeling is based on a global system state and global transactions
on the system state. In this setting, relationship types are modeled by entities (set theoretic
relations or tables) with the property of bidirectionality and symmetry.

It is obvious that in the object-oriented framework associations have to be interpreted in
a different way: both dynamic behavior and states are localized in the objects. There are
several alternatives to interpret associations and links in the context of classes and objects.
In order to clarify these alternatives, we use the simple example of Figure 3, where we
model the distributed structure of a warehouse by two classes Branch and Central Office
connected by an association coordinates.

coordinates
Central Office 1 *

Figure 3: A class diagram modeling a distributed warehouse

e One possibility is to interpret an association as a set of data links. In the example
this means that a central office object “knows about” branch objects and vice versa.
Associations therefore pose additional requirements on the object states. Inherently,
associations in this interpretation are not bidirectional relations but correspond to
two (semantically independent) unidirectional relations. See for example [26]. The
consistency of the two relations is an integrity constraint imposed on linked objects.
Another feature related with associations, the specification of their multiplicity, is
also an integrity constraint between linked objects and is discussed below.

e A second possibility is to model any association by a separate class, a so-called
association class. At first sight, this solution seems to be close to the interpretation
of relationship types in the E/R approach. However, the paradigm of local object
states requires every tuple of linked objects to be connected via an object of the
association class. Thus, in this interpretation bidirectionality has to be modeled
explicitly and the consistency problem sketched above remains. Thus, this modeling
alternative is less abstract in the object-oriented setting than the first alternative
and should be limited to the case in which associations are equipped with additional
attributes.

e A third solution is to interpret associations as communication links. In the example
the association coordinates then means that a central office object is able to com-
municate with branch objects and vice versa. Communication links in most cases
induce data links, since a prerequisite for communication with other objects is to
know about their existence.

In the sense of underspecification, we define the semantics of an association as one of these
solutions. The actual choice is left to the developer, e.g. when it becomes clear which
objects will send messages along the association. However, in this paper we only talk
about the first and simplest solution. In our system model, an association between two
classes is modeled within the set of states of the respective objects.

13



Object Diagrams

Conceptually, an object icon in an object diagram depicts a single object at a certain point
of time (with fixed attribute values). An object diagram thus describes a snapshot of the
system and corresponds to a set of system states in our system model. However, the use
of an object icon together with class icons usually means that an appropriate object is
present in all system states, from beginning to termination. This is formalized by adding
an appropriate identifier to the set of initially active objects in the system model.

UML allows some relaxations and extensions of the notations of objects. Among these
extensions are the definition of anonymous objects (i.e. objects specified solely by their
class without an object identifier), objects without associated attribute values and the
stack icon denoting multiple objects.

Anonymous objects stand for “an object” of the given class. Rather than single system
states, object diagrams with anonymous objects describe structural properties of system
states in a similar way as class diagrams do.

Aggregation and Composites

UML supports two kinds of aggregation: Shared aggregation and composite aggregation
(composition). In a composition, the lifetime of the parts is closely related with the lifetime
of the whole. Therefore, “the multiplicity of the aggregate may not exceed 1” ([2], Notation
Guide, p. 47), i.e. the parts are not shared among several aggregates. In contrast,
shared aggregation puts less constraints on the association, since it allows for sharing, and
decouples the lifetimes of the parts from the lifetime of the whole.

This differentiates the current version of UML from Version 0.91, where both concepts
have been inconsistently mixed into one. Like constraints, aggregations and compositions
are conditions on the system state, and, therefore, can easily be mapped into the system
model.

Constraints

Constraints are conditions on the system state. Constraints can refer to single objects
(e.g. for specifying dependencies between attributes) or to several (linked) objects. In
UML, constraints are specified as informal text. In order to enable a formal modeling we
consider constraints to be predicates over the system states consisting of objects. As already
discussed, further types of constraints are induced by other features of class diagrams, e.g.
by the multiplicity indicators and by dependencies between associations.

Because there are a lot of different kinds of constraints, a general solution for constraint
formalization is not possible. However, the definition of new types of precisely expressible

14



constraints would considerably improve UML. This would allow design decisions regarding
static properties of a system to be captured in a more precise and compact way.

Generalization

Inheritance is the generalization relation between classes. In our system model, inheritance
is modeled by . C . and induces the following three relations:

e Subclasses extend the interface of their superclasses. In our system model this means
that the signature of the superclass is a subset of the signature of any of its subclasses.

e A second relation relates the state spaces of super- and subclasses. This structural
relation models the property that objects of subclasses have the attributes of their
superclasses and participate in associations belonging to their superclasses.

e A third effect of inheritance concerns the sets of object identifiers. For a given class
¢, the set of associated objects is given by {id € ID| class(id) C c}. The inheritance
relation induces a subset relation between the sets of object identifiers associated with
the subclass and the superclass. This subset relation models (subtype) polymorphism,
i.e. the property that each object of a subtype is also an object of the supertype.

The above relations describe the static properties of super- and subclasses. In the UML
documentation nothing is stated about the dynamic properties of inheritance, i.e. how the
behaviors of super- and subclasses are related. In fact, inheritance of dynamic behavior is
an issue that has been neglected in object-oriented analysis methods so far.

Behavioral inheritance is a well-studied notion at the level of formal specifications (sub-
classes inherit the abstract properties of their superclasses, see for example [19], [23]) and
at the level of programming languages (subclasses may inherit the code of methods of their
superclasses). In contrast, only first attempts have been made to relate state diagrams
of superclasses and state diagrams of subclasses. One approach to this problem has been
presented in [26] and [27].

Class Packages

Class packages group parts of a class diagram. They define a syntactical name space and,
therefore, need no semantic counterpart in the system model.

Class packages may contain classes of other packages that are assumed to be imported.
The dependency between class packages can be interpreted as the visualization of such an
import of classes. Aggregation of class packages can be seen as the alternative presentation
of hierarchically nested packages.

15



3.4 Sequence and Collaboration Diagrams

In contrast to state diagrams, which describe local behavior of objects, sequence dia-
grams describe global behavior, i.e. interaction sequences between objects. However, the
methodological use of sequence diagrams has to be precisely investigated, because sequence
diagrams do not provide a complete specification of behavior, but only describe exemplary
scenarios. Since collaboration diagrams and sequence diagrams express similar informa-
tion, but show it in different ways, all propositions made about sequence diagrams in this
section apply to collaboration diagrams as well (see [2], Notation Guide, p. 66).

Exemplary Behavior

The goal of sequence diagrams is to model typical interaction sequences between a set of
objects. In Figure 4 a sequence diagram, similar to the one in the UML Notation Guide,
is given. The sequence diagram depicts a typical scenario of interaction between the three
objects named Caller, Exchange and Receiver.

Caller Exchange Receiver

caller lifts receiver

dial tone begins

dial(9)

dial tone ends

dial(1)

dial(1)

ringing tone phone rings

answer phone

tone stops ringing stops

Figure 4: A sequence diagram modeling a phone call

While the concentration on standard cases leads to an easy-to-use notation that is under-
standable by both software engineers and application experts, it has to be stressed that a
sequence diagram does not describe a necessary, but only a possible (or exemplary) inter-
action sequence between the involved objects. This leads to a semantic problem if sequence
diagrams should be considered as a specification technique.
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In particular, a sequence diagram does not specify in which states the objects have to
be in order for the described interaction sequence to occur. For instance, in the above
example the phone would not ring if the receiver was busy. Moreover, even if these states
had been specified (for instance by giving an interaction sequence leading to the state),
the sequence diagram would still leave open whether the described interaction sequence is
the only possible one to occur or whether there are other possible interaction sequences.
Therefore, from a strictly formal point of view, a sequence diagram not really makes a
proposition about the executions of a system.

Note that this is a principal problem that stems from the fact that the objective of se-
quence diagrams is to describe exemplary behavior. This problem can be relaxed by using
additional language constructs such as repetition and choice, thus providing a means for
the description of complete sets of alternative sequence diagrams.

We are currently developing a method for a seamless transition from exemplary behavior
descriptions that can be expressed, for instance, using sequence diagrams, to complete
specifications using state diagrams.

Formalization

We formalize sequence diagrams by adopting a state box view. For each vertical line in
a sequence diagram that corresponds to an object an abstract state automaton is defined
along the lines of [12]. State automata consist of a set of states, an initial state, and a set
of transitions. In our case, a transition is either labeled by an input event or by an output
event. State automata can easily be translated into state transition systems of the system
model [12], but this is not exploited here.

In contrast to the concrete state transition systems that are given by the state diagrams of
the involved objects and that describe the complete behavior of the objects, the abstract
state automata, which are derived from the sequence diagram, only describe part of the
behavior of the objects. These state automata can be derived from the sequence diagram
as follows:

e Between any two interactions, and before the first and after the last interaction, a
state is introduced. Each abstract state s¢ of the state automaton corresponds to the
set of concrete states Sy, which is a subset of the state space states;s of the object.
Note that the state sets corresponding to different abstract states do not have to be
disjoint.

e With each interaction of the object in the sequence diagram, denoted by the ith
arrow ending or beginning at the vertical line, an abstract transition between the
states s{ and s§,, is associated. This abstract transition corresponds to a nonempty
set of concrete transitions of d;4, i.e. of the transition relation of the state transition
system of the object (see Section 3.5).
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Caller Exchange Receiver

lift receiver & caller lifts receiver receiver lifted
dial t begi
get dialtone ta’ tone begins start dialtone
dial(9)
dial tone ends i
i dial(1)
dial(1)
(% phone rings
ringing tone
615 answer phone
tone stops C‘g ringing stops

Figure 5: Sequence diagram with abstract state automata

The idea of using states between interactions is taken from [29]. In [29] “extended event
traces” (EETSs) are formalized. EETSs are a notation similar to sequence diagrams; they are
used with the objective to give a complete behavior description. Moreover, [8] shows how
EETSs can be used for describing complete interaction behavior in software architectures.

By using a state box view, our formalization makes it more apparent what is missing in
sequence diagrams in order to be a specification technique:

e They leave completely open the relationship between abstract states in the sequence
diagram and concrete states in the state diagrams of the involved objects.

e They only describe which concrete transitions may occur, but they do not forbid
other concrete transitions.

To sum up, a sequence diagram describes the behavior of an object only partially, because
it corresponds only to a subset of all paths in the state diagram of the object, and because
it does not make this correspondence explicit. In contrast, a state diagram describes all
paths, and, therefore, the complete behavior of the object.

3.5 State Diagrams
State diagrams serve as the connection between the structure of an object-oriented system

and its behavior. Thus, state diagrams play a central role in the development of object-
oriented systems. UML state diagrams look similar to Harel’s statecharts [14]. However,
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several modifications and extensions make it difficult to define a precise semantics. In the
following we sketch a semantic foundation based on the system model. The formalization
is based on a semantic definition of similar state diagrams, which can be found in [12].

A state diagram can be attached either to a class or to the implementation of an operation
([2], Notation Guide, p.89). Their semantics differs accordingly. First we treat the seman-
tics of class state diagrams. Class state diagrams are associated with the class names in
CN and describe the lifecycles as well as the behavior of objects. The description is based
on the actual state, which changes during the lifecycle.

3.5.1 Class State Diagrams

In the following, we discuss the semantics of a state diagram associated with a class ¢ € CN
by transforming it into a state transition system (see Section 3.2).

States

A class state diagram c consists of a finite set STDStates. of possibly nested diagram states
and a finite set STDTrans. of diagram transitions. Diagram states are (optionally) labeled
by names that are taken from the set STDNames.. A diagram state denotes an equivalence
class of object states states;y of the corresponding object. The semantics of elementary
diagram states is, therefore, given by a function st associating with each diagram state
S € STDStates, and each object identifier id € ID, a corresponding set of object states
st(S, id) C states;q.

The above requirement that each diagram state denotes exactly one equivalence class of
object states can easily be achieved by assuming the name of the diagram state as an
additional attribute of class ¢ (and introducing internal names for anonymous states).

The semantics of compound diagram states is defined as follows:

e The semantics of a composite diagram state (a so-called “OR-state”) is given by the
union of the state sets denoted by the subdiagram states.

e The semantics of a concurrently nested diagram state (a so-called “AND-state”) is
given by building the Cartesian product of its component diagram states.

Note that, although AND-states give a notion of concurrency, they can also be used to give
a modular description of independent behavioral units of one sequential object. We do not
allow feedback-composition of statecharts in order to simplify the semantic definition of
state diagrams, as well as their understandability by the UML user. A similar comment
was made in ([3], Metamodel, p.12).
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As described above, the states of a state diagram are mapped to the states states;q of the
state transition system, which is already given by the semantics of a class diagram. The
subset of initial states states?(id) is given by the states reachable by the initial event.

Events

“An event is a significant occurrence. It has a location in time and space ...” ([2], Glossary,
p.7). Therefore, we model events as simple transmissions of messages, occurring at some
point in time. Each event ev gives rise to a set of messages msg(ev). Input events of class
¢ are modeled by the set msg(ev) C msg, of accepted messages. Similarly, output events
are given as a subset of MSG.

UML distinguishes four different cases of events: receipt of a signal, receipt of an operation
call, satisfaction of a condition and passage of a period of time ([2], Notation Guide, p.94).
The first three are modeled as transitions, which are described in the next section. The
semantics of the last is explained in [7] and not treated here.

Transitions

“A ... transition is a relationship between two states ... when a specified event occurs ...”
([2], Notation Guide, p.96).

Each transition (s,d, ev, out,C) € STDTrans. in the state diagram consists of a source
diagram state s, a destination diagram state d, an input event-signature ev, a possibly empty
output send-clause out and a guard condition C'. UML also allows action-expressions, which
are “... written in terms of operations, attributes, and links of the owning object ...” and
“... must be an atomic operation.” ([2], Notation Guide, p. 96). If the action expression
does not contain calls or signals to other objects, it just restricts the resulting object states
(and is, in this respect, similar to postconditions as allowed in Syntropy [10]). This can
be easily incorporated into the semantics given below. However, when other objects are
involved within an atomic action expression, communication with other objects is hidden in
the action expression. As discussed below, in Section 3.5.2 on operation state diagrams, in
a concurrent setting the semantics of communications not shown in the class state diagrams
is not clear.

A transition in the diagram (s, d, ev, out, C') is mapped to a set of transitions in the state
transition system of the system model. Each transition in this set fulfills the following
conditions:

e The transition starts in some state of the equivalence class st.(s) of the source diagram
state and ends in some state of the equivalence class st.(d) of the destination diagram
state.

e It is labeled with an input message from the set msg(ev). This set may be empty.
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e In addition, it is labeled with the set of output messages msg(out). This set may be
empty.

e [t fulfills condition C.

The transition relation 6.(id) of a state transition system of an object id of class ¢ contains
all transitions of these sets for all transitions in the state diagram.

UML distinguishes between simple transitions, complex transitions and transitions to
nested states. We do not consider these details here, since composite states can always be
expanded to simple states. We assume that the semantics of transitions is determined only
after this expansion.

In addition to transitions, behavior can also be specified in UML state diagrams as internal
activity, in particular entry, exit, and do actions. The latter can be treated similarly to
general action expressions.

“If an event does not trigger any transitions, it is simply ignored.” ([2], Notation Guide,
p. 96). This is modeled by an extension of J.(id) with default transitions that leave the
state unchanged. We remark, however, that another possibility is to model such events as
chaotic behavior in the sense of underspecification. This allows for a refinement calculus
on state diagrams as given in [27].

3.5.2 Operation State Diagrams

It is difficult to define the semantics of a state diagram “... attached to a method (operation
implementation) ...” ([2], Notation Guide, pp. 89), since none of the examples and only
very little text in the UML documentation are devoted to this use. There are two major
possiblities of how to associate a notion of state to an operation: either only the states of
one object are shown such that the operation state diagram only describes the effect of the
operation on one object, or the state covers several objects. In the latter case the diagram
states must refer to a combination of the participating objects’ states, thus modeling the
“... condition during ... an interaction” ([2], Notation Guide, pp.90) this method is involved
in. Furthermore, interactions between the participating objects are internal activities with
respect to this operation state diagram.

In both cases the question arises, how several operation state diagrams and class diagrams
should be combined and integrated. In a concurrent setting operation execution may be
intertwined, such that not all states of each operation are visible in the object behavior. For
example, the effect of a transfer operation between two bank accounts might not be visible
in the object state after execution of the transfer operation, since concurrent deposits and
withdrawals might have changed the accounts already.

Therefore, the simplest solution of combining class and operation state diagrams, namely,
to view the operation state diagram just as as a complex action expression attached to the
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operation calls in the class state diagrams, is not always adequate. As an action expression,
execution of operation state diagrams must be atomic (non-interruptible), which is not
true for the transfer example above. In [4] a solution is discussed that attaches virtual
objects to operation state diagrams, which can be called concurrently. This requires explicit
synchronization of the access of the virtual operation objects to the object state. In [24]
a solution is discussed that determines the semantics as the interleaving of the operation
state diagrams based on a stack handling the operation calls. A thorough discussion of the
different solutions is outside the scope of the paper. We just conclude that the combination
of object behavior descriptions and operation behavior descriptions is an unsolved problem
in the area of object-oriented modeling methods.

3.5.3 General Remarks on State Diagrams

In the following, we suggest some improvements for state diagrams:

e In addition to guard conditions, postconditions should also be allowed. As mentioned
above, this is a more abstract way of expressing the local effect of action expressions.

e There are several object-oriented approaches that implicitly use pattern matching, as
used in functional programming languages, to relate input events and their argument
values to the event triggers and their expressions. The use of these pattern matching
techniques should be stated explicitly as a description mechanism in UML and be
defined more precisely.

3.6 Activity Diagrams

Activity diagrams are a special case of state diagrams where all states have an internal
action and no transition has an input event. They can be “... attached ... to a class or to
the implementation of an operation and to a use case” ([2], Notation Guide, p.106). The
first two cases have already been discussed for state diagrams in general (see section 3.5).
In this section we discuss activity diagrams with swimlanes and action-object flow. These
features seem to be particularly relevant for use case description. Another possible use
would be to specify some operation of a composed object.

In the presence of swimlanes, the semantics of activity diagrams needs to be changed
considerably. The main reason is that now several objects are involved and operate on
their own object state. Thus, there is no notion of global state within one activity diagram
and the transitions explicitly depict data and object flow between single activities. Hence,
it is not adequate to give activity diagrams a semantics in terms of one state transition
system.

As mentioned in ([2], Notation Guide, p.111), in some cases activity diagrams with action-
object flow should be substituted by sequence diagrams. Also in our view, activity diagrams
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with swimlanes are more similar to sequence diagrams than to state diagrams. However, it
is not clear from the UML documentation, whether they should only be used as a notational
variant of sequence diagrams (where, for instance, action states correspond to named parts
of the object lifeline) or whether some semantic differences are intended. Since they have
not been included in earlier versions of UML [3], it seems likely that a more detailed
explanation will be given in the next version.

4 A Comparison of UML and SLM

In this section we sketch the description techniques of the SYSLAB method (SLM) and
compare them with UML. SLM does not cover many detailed features of the UML de-
scription techniques, since the main emphasis in SLM is on the mathematical foundation.
Features of UML which are missing in SML, but may be difficult to formalize, will be
highlighted.

4.1 A short overview of SysLLAB

The SYSLLAB project aims at giving a formal foundation to software engineering methods
for distributed systems [21]. SLM offers a set of description techniques for different views
on the system integrated and formalized through a mathematical system model [28, 18]
which is similar to the one discussed for UML.

Views

SLM covers the following views:

Data On one hand we use the algebraic specification language MINISPECTRUM][15] for
the specification of data types. It has been especially designed for ease use and
practicability. For complex data types also entity/relationship diagrams can be used
which can be schematically transformed into MINISPECTRUM specifications. Enti-
ties give ries to typ definitions with selector functions for attributes and relationships
give rise to predicates.

State Description of component (or system) state is a special case of data description.
Therefore, again ERD are used. Because of the translation into MINISPECTRUM
one can also define state functions and axioms for integrity constraints.

State-oriented Behavior Description State transition diagrams describe component
behavior in terms of transition patterns between state classes. This is similar to UML
state diagrams. As recommended in section 3.5 we employ pre- and postcondition,
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pattern matching and underspecification [12]. State transition diagrams can also be
used to define service behavior (see below).

Component-oriented Structure and Behavior Description Behavior can also be de-
scribed based on data flow. For each component the black-box behavior is charac-
terised. Using a description of the communication channels between components the
composed behavior is derived. The black-box behavior of the components can be
derived from state-oriented behavior or task-oriented behavior.

Task-oriented Behavior Similar to object-oriented methods the behavior of a compo-
nent can be structured through services. In addition, SLM uses roles such that
a component acquires different orthogonal roles during its lifetime[22]. Services of
different roles are executed in parallel. Based on roles component classes are defined.

Task-oriented Processes For complex systems it is important to be able to concentrate
on typical behavior. This can be done with processes [30] consisting of activities.
Activities are associated with roles such that a process describes a complex course of
activities distributed over several roles. These processes are used during requirements
analysis to determine the services of components. From the set of activities associated
with a role its services are derived [22].

Interaction-oriented Processes If the services are known already, typical interaction
between components are described with interaction diagrams similar to sequence
diagrams in UML.

These views can be used to describe software systems as well as the application (where the
components are humans or technical devices, and the roles describe work situations). In
SLM, first a model of the application is developed mainly using task-oriented processes.
Then the services and data of the software system are determined and interaction sequences
are used to describe the detailed user interface interactions. Starting from this interface
description, the service execution is distributed on different roles, where again first pro-
cesses are used to determine the activities of the roles and then the services and data of
the roles are derived. Finally, the roles are associated with the components.

4.2 SLM and UML

In the following we discuss similarities and differences between the two methods.

Class and Object Diagram
Classes of UML correspond to either component classes or data sorts in SLM. This is due

to a distinction between elements with state (roles) and without (data elements). ERD
used for component (role) states resemble class diagrams of UML. Similar to parameterized
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classes in UML, the sorts for entity types may be polymorphic. SLM does not offer the class
elements for detailed design and coding, but instead formal constraints and functions on
the state space can be formulated. These functional behavior specifications are important
for high-level service description. However, the precise connection between such functional
behavior descriptions and behavior description in terms of interactions (like processes, STD
and activities) still has to be worked out.

SLM does not allow generalization so far. However, component classes are derived from
roles. This covers a typical use of inheritance (from abstract classes). The encapsulation
of entity types within actor states expresses composition. A further nesting of entity types
(corresponding to aggregation) is so far not allowed in SLM. There will be a notation for
nesting of component classes which is not yet fixed. There is no notion corresponding to
class packages.

Use Case Model

SLM processes involving the system and its environment correspond to use cases. SLM
offers dataflow diagrams to show the system (or more generally component) services and
the communication paths. Thus, a use case diagram may be depicted in SLM by a dataflow
diagram. Services may be nested (corresponding to use case inclusion). Instead of showing
the external actors the roles of the external partners are given. As in UML, there is a
variety of description techniques for the behavior of services.

Sequence Diagram

SLM will include something similar to sequence diagrams. Their formal foundation (in-
cluding the timing marks and control) is not considered to be difficult. However, the
methodical use of sequence diagrams as a specification technique is an open question (see
Section 3.4).

Collaboration Diagram

SLM does not include collaboration diagrams. However, it offers several description tech-
niques covering the different uses of collaboration diagrams.

e To describe the data flow in reaction to a particular input, in SLM processes are used.
They describe the data flow between activities (and their roles), but not between
components.

e The communication relationships between different components within a specific con-
text are specified in SLM in the role description.
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e The design of services is specified with STDs.

In contrast to UML concurrency between components is the default which does not need
a special notation.

State Diagrams

SLM state transition diagrams correspond to UML state diagrams. Activities are not
associated with states in SLM. However, the semantics of component execution in SLM also
distinguishes between atomic state changes (transaction services ) and ongoing activities
(interaction service). A service call in a transition is treated as an output event in SLM.
Concurrent substates are described through role composition in SLM. An extension of SLM
with composite STD states (including the history feature) is planned. Component creation
is also modeled as a special input. In general it seems that SLM behavior description with
activities and STDs is as powerful as UML STDs.

Activity Diagrams

As discussed in the section 3.6, the semantics of activity diagrams in UML is not clear.
Operation description using activity diagrams in UML corresponds to service decription
using processes in SLM. The presence of swimlanes is mirrored in SLM by different roles.

Component and Deployment Diagram

As SLM focuses on the requirement analysis and design there are no equivalents to compo-
nent and deployment diagrams. Concerning the deployment diagrams, in SLM components
are considered as ideal processors carrying out the associated activities without any restric-
tions on the ressources.

Summary

There are three major differences between SLM and ULM.

First, SLM is more adequate for specification purposes allowing for high-level data descrip-
tion through algebraic data types and using axioms to express pre- and postconditions,
integrity constraints and the like. Also, the semantics of SLM description techniques is
chosen to allow for underspecification which is the basis of incremental development. On
the contrary, ULM allows more fine grained class descriptions tuned for design and coding
purposes.
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Second, SLM employs process descriptions based on activities. They allow a functional
behavior description in contrast to the interaction based sequence diagrams. It seems that
activity diagrams of UML have been introduced exactly for that reason, but the semantics
of activity diagrams in the presence of swimlanes is not clear.

Third, SLM in its current version is not tuned to object-orientation, but allows for the
description of any distributed system. We think that the concept of roles is more flexibel
than generalization during the earlier phases.

Altogether, we are happy to see that the work on the formal foundation of SLM translates
quite easily to ULM. Thus, there is some hope that the benefits of formal foundation will
be made use of in standardized case tools.

5 Conclusion

In the preceding sections we have presented a proposal for the formal foundation of the
Unified Modeling Language. As a direct result of our work, we detected a number of
concepts that are not precisely defined, like the meaning of constraints in a concurrent
setting of objects or the way how operations are specified and integrated in the overall
object behavior. We also suggested enhancements of the UML descriptions, and we have
argued that it is possible to map the UML language constructs to a coherent and sound
semantic model.

Based on the formal foundation, we have compared SLM and UML. We discovered quite a
few similarities, but also some major differences which are summarized in the last section.

A main idea of the semantics is to represent an overall system view in the semantic do-
main. This overall system view has been called system model. A system model describes
both static and dynamic behavior of objects, including, for instance, dynamic object cre-
ation, concurrent behavior of objects with asynchronous message sending and inheritance
relations.

The semantic domain of streams, on which our approach is based, has proved to be powerful
enough to model specific properties of application domains like real-time systems and
information systems. This is important, since UML claims to be an application independent
analysis and design language.

There is still a lot of work to be done. Besides the precise elaboration of the semantics,
there are several directions for future work.

A first main direction focuses on the benefits of the system model. As stated in the intro-
duction, a formal semantics is the prerequisite for studying refinement steps, relationships
between different description techniques, and for giving conditions that ensure the consis-
tency of a system specification. In a second step, such properties have to be studied in the
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semantic domain, and, what is crucial, have to be formulated at the syntactical level. Only
if, for instance, consistency conditions can be formulated at the level of the description
techniques, they can be integrated into a tool and support a sound system development.
First work in this area has been presented, for instance in [27], where refinement steps for
state diagrams are elaborated.

A second main direction for future work concerns aspects of the design process. Like UML
itself, our semantic framework has been defined independently of a design methodology.
Issues that still have to be addressed in more detail are, for instance, operation specifi-
cations and use case specifications. In the current stage of development, it is not clear
what techniques effectively support the designer to specify operations and use cases and
how they are integrated in the system specification. A first approach clarifying the re-
lationships between the notions of messages, events and methods (operations) has been
presented in [4]. These studies provide guidelines and schemes for integrating partial views
of a system (like operation behavior) into an overall system view and assist the developer
to gain a structured and sound system specification.
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