Towards a Precise Semantics
for Object-Oriented
Modeling Techniques™

Ruth Breu, Radu Grosu, Franz Huber,
Bernhard Rumpe, Wolfgang Schwerin

email: {breur,grosu,huberf,rumpe,schwerin}@informatik.tu-muenchen.de

In this paper, we present a possible way how a precise semantics of object-
oriented modeling techniques can be achieved, and what the possible benefits
are. We outline the main modeling techniques used in the SYSLAB project,
sketch, how a precise semantics can be given, and how this semantics can be
used during the development process.

*This paper originates from the SYSLAB project, which is supported by the DFG under the Leib-
nizprogramme and by Siemens-Nixdorf.

1 Introduction

The development of complex software systems is a subject of great technical, economic
and scientific importance. In order to improve the development process, software devel-
opment methods are used. A software development method can be defined as a unified
approach incorporating multiple description techniques, characterising a system from
several points of view. Most of these description techniques currently used, however,
lack a formal semantics. While recent research works on formal methods aim at the
formal foundation of separate description techniques, less emphasis is put on the formal
integration of the multiplicity of description techniques used in a single method. Yet,
integrated description techniques are the basis for a systematic design and for vast tool
support during the development process.

Besides the use of description techniques in specific methods, one has to consider them in
a more general scientific context. Their importance for modeling software systems might
turn out to be comparable to the importance of mathematical techniques, invented in
the second half of the 19’th century to model physical processes. Therefore, a scientific
foundation of description techniques seems to be of great significance.

It is the aim of the SYSLAB project to develop a mathematically founded modeling
technique for distributed, object-oriented systems, based on UML [BRJ96] description
techniques. The modeling technique will offer a systematic set of steps for enhancing,
refining, and transforming documents of the description techniques used in SYSLAB. It
supports the systems development process from analysis to implementation.

2 The SysLAB Description Techniques

2.1 Modeling Method

A modeling method roughly defines the process of software development. It turns out
that the description techniques used and their usage order are rather orthogonal. It
therefore makes sense to develop the description techniques and their precise semantics
independently of the modeling method, as, e.g., done in UML 1.0. However, the se-
mantics has a severe impact on the possible transformation steps for documents. These
transformation steps are the connection between the description techniques and the
method. A method can be seen as a set of guidelines and heuristics that tell the de-
veloper when and why to use a sequence of transformations. The method tells what
the prerequisites are, what the benefits are, and what pitfalls should be avoided (quite
similar to design patterns [GHJV94]).

Description techniques used to define different views of a system, play a central role
within a modeling method. Documents describing a system using these techniques are
used and transformed until the whole system is described by a set of executable doc-
uments. Basically, we use the following description techniques originating from UML,
but adapted and specialized to allow the definition of a precise semantics:

e Informal Text (IT)
e Message Sequence Charts (MSC)
e State Transition Diagrams (STD)

e Object Model (OM)

e Specification Language (SL)
e Programming Language (PL)

Documents of these kinds are provided with a semantics based on a mathematical system
model (MSM). Through this semantic foundation, we not only get a precise semantics
for our documents, but also an integrated one, which allows us to define transformations
between documents as well as rigorous context conditions within and between different
description techniques.

A transformation step is a step that takes a finite set of documents (often one) and
produces new documents. The set of possible transformations is to be chosen carefully,
to ensure systematic and correct manipulation of documents. Then it is, e.g., possible to
inherit the STD-based behaviour description of a class to its subclasses using a refinement
calculus, as, e.g., given in [Rum96, RK96], which is similar to refinement calculi, like e.
g. the work of C. Morgan [Mor90].

The development of a system is captured in a development graph, which contains docu-
ments as nodes and dependencies between them as directed arcs. Each document has a
state which, e.g., captures whether a document is still necessary or already redundant,
because its successor documents contain all information of the document. Such infor-
mation for documents is necessary, on the one hand, to trace requirements and design
decisions through the development process, and, on the other hand, to allow requirement
changes in a systematic way.

2.2 Description techniques

For software engineers it is extremely important to describe complex structural and
dynamic dependencies in a clear and systematic way. Therefore, several description
techniques, providing different views as well as different abstraction levels, are used.
Based on existing object-oriented modeling techniques like UML or OMT [BR.J96,
RBP*91] we use the following techniques as core of the SysLAB-method:

Informal Text (IT) comprises any kind of text, diagrams, tables and graphics. When-
ever desired or necessary, I'T can be used, thus allowing scalability of formal tech-
niques. It is escpecially useful to capture requirements in early phases, comments
and annotations not yet fully explored, and to store reasons for design decisions.
Despite its informal character, IT can be used in a systematic way, e. g. to ex-
tract of classes and attributes from requirements descriptions. We also attach a
state to informal documents, capturing e.g. the validation or redundancy state of
a document.

Message Sequence Charts (MSC) describe separate flows of communication or sub-
sets of communication flows in a system. Emphasis is put on communication
between separate parts (objects or groups of objects) of a system. Constituting a
high level of abstraction, MSCs are well suited to capture a system’s requirements.
Moreover, MSCs can be used for and generated by simulation respectively.

Our MSC variant is based on the message-oriented model and allows us to define
different layers of abstraction, repetition, choice and hierarchy of MSCs.

One of the main and still unsolved problems is the semantics of an MSC in the
presence of underspecification and nondeterminism. Consider the following situa-
tion, where one MSC is given: Is the semantics of the MSC given by the constraint,

that each system-run exhibits the message sequence indicated by the MSC? How
often does it have to occur? Is there a starting “trigger” for an MSC? If another
MSC with the same “trigger” exists, which one is to be choosen? Are both al-
lowed? Are both to be executed in a fair manner? Can we allow to add a third
MSC or choose to implement only the second?

It seems, that some kind of completeness assumption could be necessary to allow
a set of MSCs to be given a semantics. Furthermore, a starting part (usually the
first message) should be considered as a starting trigger.

State Transition Diagrams (STD) describe the lifecycle of objects. In STDs, descrip-
tions of state and behaviour are combined. Different levels of abstraction allow
both the specification of an object’s interface as well as the specification of meth-
ods. Refinement techniques enable not only inheritance of behaviour but also
stepwise refinement of abstract STDs, resulting in an implementation.

To describe a detailed behaviour of transitions, it is necessary to use a specification
language that relates input and source state with output and destination state.
This specification language is characterised below.

Object Model (OM) describes the static structure of a system. The OM encompasses
the description of classes and of relationships between classes: association, ag-
gregation, and generalization. It includes the signature of objects, given by their
operations and attributes.

To describe structural invariants that have to be maintained, we use the same
specification language as for transitions in STDs.

Specification Language (SL) is an axiomatic specification language based on predicate
logic, resembling Spectrum [BFGT93a, BEFGT93b]. SL allows declarative definition
of properties. Particularly, SL is used for the definition of pre- and post-conditions
of transitions and for the definition of state invariants not only in single objects
but also between several objects in the OM. In order to enable automatic testing
of verification conditions, SL is also oriented towards functional programming,
resembling Gofer [Jon93] in this concern. As an effect, the step from high-level
descriptions towards executable code is facilitated, which again makes prototyping
easier.

Programming Language (PL) is an executable implementation language. System de-
scriptions formulated in an executable language are the target of any software
development process. Therefore the integration of PL in our method is a must. De-
signing PL as a subset of the object-oriented language Java [F1a96] seems to be rea-
sonable. Besides others, Java has the advantage of being architecture-independent.
In order to fully integrate PL into the development process, assigning PL a formal
semantics is necessary.

For each description technique, except Infomal Text (IT), a formal abstract syntazx, a
concrete diagrammatic or textual representation, and a complete set of context conditions
for the correctness of documents will be supplied. Furthermore, a formal semantics based
on the MSM will be given.

3 Mathematical System Model (MSM)

3.1 Informal Description of MSM

The mathematical system model serves as a basis for the creation of the semantics
of the description-techniques. The MSM describes the whole set of systems SM that
can be specified by the SysLLAB-method. The MSM is formalized using mathematical
techniques [RKB95, KRB96]. However, for an understanding of the SYSLAB method it
is not necessary to know the formalization of the MSM. For this reason, we only roughly
sketch the MSM below.

A system consists of a dynamically changing set of objects. The objects are grouped by
a finite set of classes. A state is assigned to each object. Both the object’s attributes
as well as the set and states of its active operations determine the object’s state. A
signature describes the set of incoming and outgoing messages, which can be classified
into method calls and return messages.

3.2 Formalisation and Usage of MSM

Let SM be the set of systems that we are interested in. Let us assume that we have
formalised the syntax for the description techniques, resulting in a set of context correct
documents DOC. The semantics of one document d € DOC is given by a set of systems
that obey the restrictions of this documents. Formally, we define the semantics function

" []] : DOC — P(SM)

If, for example, d is an object model, each class mentioned in d has to exist in each
system s € [[d]]. Classes not mentioned in d may exist, but need not. A canonical
minimal system may be implemented containing only mentioned classes, but adding
new classes is a perfect refinement, as we will see. This “loose” semantics [BBB*85] for
documents allows a very simple and powerful extension of the semantics function to sets
of documents D C DOC:

o)<) lld]
deD

This definition captures the idea that adding documents, and thus refining the existing
information about the system in development, rules out more and more systems, until
only the system to be implemented remains as semantics.
We now can define the notion of redundancy. A document d is redundant with respect
to another document d’, if the semantics of the latter is a precision of the former:
[[d'] C [[d]]. Any redundant document does not need to be considered in the development
any longer, as the semantics of the complete set of documents is the same as of the non
redundant subset, here: [[d, d']] = [[d]].
However, a document being redundant in this formal sense can still be important for
documentation reasons. For example, the abstract and therefore redundant version of a
document may omit details which are irrevelant for human understanding.
We can also define the notion of refinement =. Document d’ refines d, is defined by:

df=d < [[d) C [[d]

This definition immediately shows, that the refined document d becomes redundant, and
only the refinement d' has to be considered furthermore.

This notion of semantics allows us to classify different kinds of transformations of doc-
uments. Besides the distinction between transformations, using zero, one or more doc-
uments as sources, we also can distinguish between transformations that make their
sources redundant, as well as between transformations that add information and are
therefore true refinements or semantics preserving transformations.

On the one hand, these transformations must grant as much freedom as possible to the
developer. On the other hand, a systematic development of correct systems has to be
ensured.

4 Conclusion

In this paper, a coherent set of description techniques based on UML and used in the
SYSLAB project has been presented. Documents, created using these description tech-
niques specify a set of systems in a loose manner. The development of a system can be
understood as the repeated transformation, e.g., refinement, of documents. The intro-
duction of a mathematical system model assigns not only an integrated formal semantics
to the set of description techniques, but also to the set of transformations.

References

[BBB*85] F.L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger,
R. Gnatz, E. Hangel, W. Hesse, B. Krieg-Briickner, A. Laut, T. Matzner,
B. Moller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wirsing, and
H. Wossner. The Munich Project CIP, Vol 1: The Wide Spectrum Language
CIP-L. LNCS 183. Springer-Verlag, 1985.

[BFGt93a] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hulimann, D. Nazareth, F. Re-
gensburger, O. Slotosch, and K. Stglen. The Requirement and Design Spec-
ification Language SPECTRUM, An Informal Introduction, Version 1.0, Part
1. Technical Report TUM-19312, Technische Universitat Miinchen, 1993.

[BEG'93b] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. HuBmann, D. Nazareth, F. Re-
gensburger, O. Slotosch, and K. Stglen. The Requirement and Design Spec-
ification Language SPECTRUM, An Informal Introduction, Version 1.0, Part
2. Technical Report TUM-19312, Technische Universitat Miinchen, 1993.

[BRJ96] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
for Object-Oriented Development, Version 1.0, 1996.

[F1a96] David Flanagan. Java in a Nutshell: A Desktop Quick Reference for Java
Programmers. O’Reilly & Associates, Inc., 1996.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1994.

[Jon93] M. P. Jones. An Introduction to Gofer, 1993.

[KRB96] C. Klein, B. Rumpe, and M. Broy. A stream-based mathematical model
for distributed information processing systems - SysLab system model - .
In Jean-Bernard Stefani Elie Naijm, editor, FMOODS’96 Formal Methods

[Mor90]
[RBP*91]

[RK96]

[RKB95]

[Rum96]

for Open Object-based Distributed Systems, pages 323-338. ENST France
Telecom, 1996.

C. Morgan. Programming from Specifications. Prentice-Hall, 1990.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

B. Rumpe and C. Klein. Automata describing object behavior, pages 265—
287. Kluwer Academic Publishers, Norwell, Massachusetts, 1996.

B. Rumpe, C. Klein, and M. Broy. Ein strombasiertes mathematisch-
es Modell verteilter informationsverarbeitender Systeme - Syslab Sys-
temmodell. Technical Report TUM-19510, Technische Universitat Miin-
chen, Institut fiir Informatik, March 1995. http://www4.informatik.tu-
muenchen.de/reports/TUM-19510.ps.gz.

B. Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Sys-
teme. Herbert Utz Verlag Wissenschaft, 1996. PhD thesis, Technische Uni-
versitat Miinchen.

