2007 DARPA Urban Challenge
Technische Universitdt Carolo-Wilhelmina zu Braunschweig
Carl-Friedrich-GauB-Fakultat, Department Informatik
Institut fiir Software Systems Engineering

Team CarOLQO — Technical Paper

Informatik-Bericht 2008-07

C. Basarke®, C. Bergerﬁ, K. BergerQ, K. Cornelsen?,
M. Doering®, J. Effertz3, T. Form3, T. Giilke5,

F. Graefe3, P. Hecker*, K. Homeier®, F. Klosef, C. Lipski2,
M. I\/Iagnor2, J. Morgenroth5, T. Nothdurft?, S. Ohl3,
F. Rauskolb!, B. Rumpe®, W. Schumacher?,

J. Wille?, L. Wolf®

Herzfeld & Rubin, P.C.,
2Computer Graphics Lab,
3Institute of Control Engineering,
4Institute of Flight Guidance,
SInstitute of Operating Systems and Computer Networks,

Snstitute of Software Systems Engineering

carolo-uc@tu-bs.de

http://carolo.tu-bs.de

October 1, 2008

Contents

1 Motivation and Introduction 1
2 The 2007 DARPA Urban Challenge and Team CarOLO’s Participation 2
2.1 The 2004 & 2005 DARPA Grand Challenges 2
2.2 The 2007 DARPA Urban Challenges 3
2.3 Team CarOLO’s Participation 4

3 System Architecture 7
4 System Modules 10
4.1 Sensor Fusion 10
4.1.1 Sensor Concepto 10

4.1.2 Object Tracking Fusion, 12

4.1.3 Grid-based fusion L Lo 18

4.2 VISion e e 22
4.2.1 Lane Detection, 22

4.2.2 Area Processor 29

4.3 Artificial Intelligence 37
4.3.1 The DAMN-Architecture 37

4.3.2 Interrupts 38

4.3.3 Exampleo 39

4.4 Vehicle Control 39
4.4.1 Longitudinal Control 39

4.4.2 Lateral Control, 43

4.5 Safety 48

5 System Development Process 49
5.1 Simulator 50
5.2 Quality Assurance 54

6 The Race 57
6.1 National Qualification Event 57
6.1.1 Area A 57

6.1.2 AreaB 59

6.1.3 Area C 60

6.2 Mandatory Practice for DARPA Urban Challenge Final Event 61
6.3 DARPA Urban Challenge Final Event 62

7 Conclusion 65

Abstract

The 2007 DARPA Urban Challenge afforded the golden opportunity for the
Technische Universitdt Braunschweig to demonstrate its abilities to develop an au-
tonomously driving vehicle to compete with the world’s best competitors. After
several stages of qualification, our team CarOLO qualified early for the DARPA
Urban Challenge Final Event and was among only eleven teams from initially 89
competitors to compete in the final. We had the ability to work together in a large
group of experts, each contributing his expertise in his discipline, and significant
organisational, financial and technical support by local sponsors who helped us to
become the best non-US team.

In this report, we describe the 2007 DARPA Urban Challenge, our contribu-
tion "Caroline”, the technology and algorithms along with her performance in the
DARPA Urban Challenge Final Event on November 3, 2007.

1 Motivation and Introduction

Focused research is often centered around interesting challenges and awards. The airplane
industry started off with awards for the first flight over the British Channel as well as the
Atlantic Ocean. The Human Genome Project, the RoboCups and the series of DARPA
Grand Challenges for autonomous vehicles serve this very same purpose to foster research
and development in a particular direction. The 2007 DARPA Urban Challenge is taking
place to boost development of unmanned vehicles for urban areas. Although there is an
obvious direct benefit for DARPA and the U.S. government, there will also be a large
number of spin-offs in technologies, tools and engineering techniques, both for autonomous
vehicles, but also for intelligent driver assistance. An intelligent driver assistance function
needs to be able to understand the surroundings of the car, evaluate potential risks and
help the driver to behave correctly, safely and, in case it is desired, also efficiently. These
topics do not only affect ordinary cars, but also buses, trucks, convoys, taxis, special-
purpose vehicles in factories, airports and more. It will take a number of years before we
will have a mass market for cars that actively and safely protect the passenger and the
surroundings, like pedestrians, from accidents in any situation.

Intelligent functions in vehicles are obviously complex systems. Large issues in this
project where primarily the methods, techniques and tools for the development of such
a highly critical, reliable and complex system. Adapting and combining methods from
different engineering disciplines were an important prerequisite for our success. For a
stringent deadline-oriented development of such a system it is necessary to rely on a clear
structure of the project, a dedicated development process and an efficient engineering that
fits the project’s needs. Thus, we did not only concentrate on the single software modules
of our autonomously driving vehicle named Caroline, but also on the process itself. We
furthermore needed an appropriate tool suite that allowed us to run the development
and in particular the testing process as efficient as possible. This includes a simulator
allowing us to simulate traffic situations and therefore achieve a sufficient coverage of test
situations that would have been hardly to conduct in reality. Only a good collaboration
between the participating disciplines allowed us to develop Caroline in time to achieve
such a good result in the 2007 DARPA Urban Challenge.

1

In the long term, our goal was not only to participate in a competition but also
to establish a sound basis for further research on how to enhance vehicle safety by im-
plementing new technologies to provide vehicle users with reliable and robust driver
assistance systems, e.g. by giving special attention on technology for sensor data fusion
and robust and reliable system architectures including new methods for simulation and
testing. Therefore, the 2007 DARPA Urban Challenge provided a golden opportunity to
combine several expertise from several fields of science and engineering. For this purpose,
the interdisciplinary team CarOLO had been founded, which drew its members from five
different institutes. In addition, the team received support from a consortium of national
and international companies.

In this paper, we firstly introduce the 2007 DARPA Urban Challenge and derive the
basic requirements for the car from its rules in section 2. Section 3 describes the overall
architecture of the system, which is detailed in section 4 describing sensor fusion, vision,
artificial intelligence, vehicle control and along with safety concepts. Section 5 describes
the overall development process, discusses quality assurance and the simulator used to
achieve sufficient testing coverage in detail. Section 6 finally describes the evaluation
of Caroline, namely the performance during the National Qualification Event and the
DARPA Urban Challenge Final Event in Victorville, California, the results we found and
the conclusions to draw from our performance.

2 The 2007 DARPA Urban Challenge and Team Car-
OLO’s Participation

The 2007 DARPA Urban Challenge is the continuation of the well-known Grand Chal-
lenge events of 2004 and 2005, which were entitled "Barstow to Primm” and "Desert
Classic”. To continue the tradition of having names reflect the actual task, DARPA
named the 2007 event "Urban Challenge”, announcing with it the nature of the mission
to be accomplished.

2.1 The 2004 & 2005 DARPA Grand Challenges

The 2004 course, as shown in Fig. 1, led from the Barstow, California (A) to Primm,
Nevada (B) and had a total length of about 142 miles. Prior to the main event, DARPA
held a qualification, inspection and demonstration for each robot. Nevertheless, none
of the original fifteen vehicles managed to come even close to the goal of successfully
completing the course. With 7.4 miles as the farthest distance travelled, the challenge
ended very disappointingly and no one won the $1 million cash prize.

Thereafter, the DARPA program managers heightened the barriers for entering the
2005 challenge significantly. They also modified the entire quality inspection process to
one involving a step-by-step application process, including a video of the car in action
and the holding of so-called Site Visits, which involved the visit of DARPA officials to
team-chosen test sites. The rules for these Site Visits were very strict, e.g. determining
exactly how the courses had to be equipped and what obstacles had to be available.
From initially 195 teams, 118 were selected for site visits and 43 had finally made it into
the National Qualification Event at the California Speedway in Ontario, California. The

2

Figure 1: 2004 DARPA Grand Challenge Area between Barstow, CA (A) and Primm,
NV (B).

NQE consisted of several tasks to be completed and obstacles to overcome autonomously
by the participating vehicles, including tank traps, a tunnel, speed bumps, stationary
cars to pass and many more.

On October 5, 2005, DARPA announced the 23 teams that would participate in the
final event. The course started in Primm, Nevada, where the 2004 challenge should have
ended. With a total distance of 131.6 miles and several natural obstacles, the course was
by no means easier than the one from the year before. At the end, five teams completed
it and the rest did significantly better as the teams the year before. The Stanford Racing
Team was awarded the $2 million first prize.

2.2 The 2007 DARPA Urban Challenges

In 2007, DARPA wanted to increase the difficulty of the requirements, in order to meet the
goal set by Congress and the Department of Defense that by 2015 a third of the Army’s
ground combat vehicles would operate unmanned. Having already proved the feasibility
of crossing a desert and overcome natural obstacles without human intervention, now a
tougher task had to be mastered. As the United States Armed Forces are currently facing
serious challenges in urban environments, the choice of such seemed logical. DARPA used
the good experience and knowledge gained from the first and second Grand Challenge
event to define the tasks for the autonomous vehicles. The 2007 DARPA Urban Challenge
took place in Vicorville, CA as depicted in Fig. 2.

3

Figure 2: 2007 DARPA Grand Challenge Area in Victorville, CA.

2.3 Team CarOLOQO’s Participation

The Technische Universitiat Braunschweig started in June 2006 as a newcomer in the
2007 DARPA Urban Challenge. Significantly supported by industrial partners, five in-
stitutes from the faculties of computer science and mechanical and electrical engineering
equipped a 2006 Volkswagen Passat station wagon named "Caroline” to participate in
the DARPA Urban Challenge as a "Track B” competitor. The team (see Fig. 4) led
by Prof. Dr. B. Rumpe, was organized as shown in Fig. 3: The overall project steering
was made by a global steering committee, the formal project leader for DARPA was
F. Rauskolb, the technical project leader was Prof. Dr. T. Form. The communication
between the steering committee and the team as well as the overall team organization
was made by C. Berger who also led the simulation and testing sub-team. The sub-team
responsible for perception and sensors was led by J. Effertz. The sub-team for reasoning
and planning who was responsible for all intelligent algorithms was led by K. Home-
ier. The sub-team responsible for vehicle’s control and all hardware modifications and
enhancements was led by J. Wille, K. Cornelsen and M. Doering.

Track B competitors did not receive any financial support from the DARPA compared
to "Track A” competitors. Track A teams had to submit technical proposals to get
technology development funding awards up to $1,000,000 in fall 2006. Track B teams
had to provide a 5 minutes video demonstrating the vehicles capabilities in April 2007.
Using these videos, DARPA selected 53 teams of the initial 89 teams that advanced to
the next stage in the qualification process, the "Site Visit” as already conducted in the

4

Steering Committee

Thomas Form Peter Hecker ~ Marcus Magnor ~ Bernhard Rumpe Walter Schumacher Lars Wolf

l

[Bernhard Rumpe]

(Project Leader)
1

Fred Rauskolb] fThomas Form
(Formal Team Leader) J y ((Technical Project Leader)

[Christian Berger]

(Team Leader)

QA/Simulation Marketing/PR

« Christian Berger « Joop Flack

« Christian Basarke « Hendrik Stocker

« Tim Gllke « Manuel Juhrs

! ¥

Perception&Sensors Reasoning&Planning Vehicle Control/
« Jan Effertz « Kai Homeier Hardware
« Fabian Graefe . Tobias Nothdurft + Jorn Marten Wille
. (S;b.as.tianLQhL. . Christian Basarke « Karsten Cornelsen
 Watenh Deronciz
. Kai Berger « Andreas Donners « Johannes Morgenroth
« Felix Klose « Andre Steinert

Figure 3: Team CarOLO’s Organization

2005 Grand Challenge.

Team CarOLO got an invitation for a Site Visit that had to take place in the United
States. Therefore, team CarOLO accepted gratefully an offer from the Southwest Re-
search Insitute in San Antonio, Texas providing a location for the Site Visit. On June
20, Caroline proved that she was ready for the National Qualification Event in fall 2007.
Against great odds, she showed her abilities to the DARPA officials when a huge thunder-
storm hit San Antonio during the Site Visit. The tasks to complete included the correct
handling of intersection precedence, passing of vehicles, lane keeping and general safe be-
haviour. After the demonstration, the team returned to Germany together with Caroline.
After returning to Germany, the team was enlarged with Prof. Dr. W. Schumacher and
some of his employees.

On August 9, the team received the results of the Site Visit event together with
an inivitation to the next stage of the qualification process: The National Qualification
Event in Victorville, California. Being a semi-finalist team, the team returned at the
end of September to the Southwest Research Institute in San Antonio to finalize the
development and tests. Three weeks later, Caroline and the team arrived in Victorville,
California and participated in the National Qualification Event. To qualify for the Final
Event, three courses had to be mastered by the vehicles, each one covering a certain part
of the requirements. At the first course, called "Track A”, the robots needed to merge
into moving traffic, "Track B” required the handling of very long and complex routes with
stationary obstacles and "ITrack C” tested intersections and how the vehicles handle the
blockage of roads. Demonstrating repeatedly the performance of Caroline in all tracks of
the National Qualification Event, Caroline qualified early for the final stage, the DARPA
Urban Challenge Final Event held on November 3. In chapter 6, the overall performance

5

of Caroline in the National Qualification Event and the DARPA Urban Challenge Final
Event is illustrated.

Figure 4: Team CarOLO

3 System Architecture

Caroline is a standard 2006 Volkswagen Passat station wagon equipped with a variety of
sensors, actuators and computers to function as an autonomous mobile robot. In front,
two multi-level laser scanners, one multi-beam lidar sensor and one radar sensor cover a
field of view up to 200 meters for approaching traffic or stationary obstacles. In addition,
four cameras detect and track lane markings in order to allow precise lane keeping. The
stereo vision system behind the windshield and another color camera combined with
two laser scanners mounted on the roof were installed to provide information about the
drivability of the terrain in front of the vehicle. Very similar to the front of the vehicle,
one multi-level laser scanner, one medium range radar, one lidar and two radar-based
blind-spot-detectors enable Caroline to detect obstacles at the rear. All these sensors are
depicted in Fig. 5.

1x IDS uEye

4x Point Grey Flea2

1 2x SMS UMRR
; i Medium Range Radar
(front & rear)

2x Sick LMS 291 \ = ‘_ :

Stereo Camera System

2x IBEO Alasca XT

(Fusion Cluster) 2x SMS Blind Spot

Detector (left & right)

\+-4:.: "'__'._'l‘:l‘:..- ‘ (_ g X
A UL LIV ; B 1xIBEOML

(rear)

2x Hella IDIS

LIDAR-System
(front & rear)

Figure 5: The perception system.

An array of automotive PCs mounted on a rack shown in Fig. 6 functions as the
hardware platform for a distributed software architecture with all internal communication
based upon Ethernet. The access to Caroline’s by-wire steering, brake and throttle system
as well as to other low level actuators is provided through a CANLOG IIT command
interface, which also connects to the vehicle’s E-stop system to provide emergency stop
functionality even if the complete software system described below should fail. Regardless
to those lower level components described above, all computing and control hardware is
based on industrial PC technology, thereby reducing hardware variety, simplifying failure
management along with component replacement.

The development of Caroline is divided among a number of institutes and disciplines,

7

including faculties for computer science and mechanical and electrical engineering. Mir-
roring this internal structure, Caroline’s architecture is grouped into eight principal mod-
ules, interconnected with predefined interfaces as shown in Fig. 7: Sensor Data Acquisi-
tion, Sensor Data Fusion, Image Processing, Digital Map, Artificial Intelligence, Vehicle
Path Planning and Low Level Control, Supervisory Watchdog and Online-Diagnosis,
Telemetry and Data Storage for Offline Analysis. Due to the intentionally linear signal
flow between each function module without major signal loops, we are able to develop
different modules independently and with minimum interference.

Starting at the bottom of this linear flow, the data acquisition unit provides necessary
hard- and software modules to collect and process incoming data from all active sensors for
object recognition. Since all of the sensors used are standard components originating from
contemporary automotive driver assistance systems, they are equipped with a Controller
Area Network (CAN) communication interface. Taking into account the limitation of
this bus standard regarding data throughput and determinism, a private sensor CAN
was chosen for each sensor to keep latencies small and to avoid bus conflicts.

Stereo Vision

g : J,-". Sensors .
ErE e

/ '/"ffﬁ —
Main Power g '_

Figure 6: Computer rack and power supply.

The acquisition of GPS and INS data (referred as Ego State in the following) was
moved directly into the real-time vehicle control unit in order to avoid large latencies
within the closed loop dynamic control. The time of day is obtained from the GPS and
distributed via the network time protocol (NTP) to all subsystems.

Incoming video data is sampled from the assigned IEEE 1394 interface, preprocessed
and interpreted directly on the image acquisition PCs to avoid overload of the vehicle’s
internal network by image data. Lane detection data is directly passed to the artificial
intelligence. The stereo vision system delivers 3D scan points along with area data
describing the drivability of the road. This data is fused with further scan points obtained
from the laser scanners and area data from the additional color camera observing the
ground in front of the vehicle. This fusion results in a drivability grid which is sent to
the artificial intelligence module.

Furthermore, following Caroline’s signal flow, sensor data of all object-recognition

8

T} Huay) lsaa) gk (e | puogh Lmas) (e | o) g
Xz Xz

[iomms | | 020 | |l S| | ol | | g || wn || e || o || w0 |
. . : :
suresaweg ozasn zzvsy NYD Nvo NYO YO arBel 3331 duepsewyy 1L INL
! ; . .
R 0 S O SN SN) S § SN 9 U § S S
_.:quaé__icg__gu_wc&__ uopisinbay Eieg __.iuaﬁ___ SN _
: 1 I 1 1] '
uoesyssery | sepey iep] st | uanewaug
‘Sluing ueag gg | DT BV || SWiled UEDS 08 woy ereq walig eeq ebew pue uopsog 063
7 10553001 punaig) (Bunsoes) 19g0) U UoIsNd BB 7 7 105530014 SUE| 4
H P - 1 N B K
pig Augeasg | | dep uonessi3 SNOWeY ejeg sue s
] 1 ;
xog
opoey ||
Hois AusCoeuis 1050y]
==t BEiiiil D (| AR ([s ————
domg-fousBiaws uossy
Vduva
aseNOY
BROK DIy {) asn
H w Bopiciein
spuBwey Asusbipwg
wepuy ' i |
o At sioneyeguing siopeyagpaads
| 4
1958 SN JapgIInL ssyaypeads
Jesseg G i
uaBeMSHOA L |
s ooy [+ | () o0UBpIND BpIUAA le—i o opghiopslesy b -
eauogepMeA |, oiales] pausag
Buiued gieg

ainjoajiyaly wayshg

Figure 7: System architecture.

sensors is processed within a central sensor data fusion unit as described in section 4.1,
which transmits the object-based vehicle’s surroundings containing all static and dynamic
targets in Carolines field of view to the digital map. The digital map combines online
environmental information with available offline information generated from mission def-
inition files (MDF) and route network definition files (RNDF') provided for the mission.
This combined data is the basis for the artificial intelligence to generate driving decisions
based on a Distributed Architecture for Mobile Navigation scheme (DAMN) as proposed
by [Ros97] and described in section 4.3.

The driving commands obtained, e.g. "follow a given road” are issued to the soft real
time control module, which carries out trajectory generation and optimization based on
driving dynamics of the vehicle. The driving trajectories generated are then passed along
into hard real time control that addresses the vehicle actuators.

All modules previously described are supervised by a central watchdog process with
the possibility to kill and restart one or several processes, computers or sensors indepen-
dently. Thus, a maximum of self-healing capability is installed in Caroline’s systems.

The visualization module is used during development in order to display all exchanged
object data. This data consists of e.g. obstacles, lanes, terrain drivability, the planned
path and mission data files. A recorder and a player module which logs data for the
purpose of offline-analysis, are also integrated in this module.

4 System Modules

Caroline’s software system consists of five modules. Tasks to be mastered in order to
compete in the 2007 DARPA Urban Challenge are environment recognition, road find-
ing, situation assessment and vehicle control supervised by a safety module. These core
modules are described below.

4.1 Sensor Fusion

Perception is one of Caroline’s key systems. The system detects obstacles as well as
the drivability of the environment. The sensor fusion system is separated in two parts.
The first one is responsible for obstables, such as other cars, walls or pedestrians. The
other one takes care of the drivability of the environment. Thus, it is possible to keep
the car on the road even in rough evironments. Based on this information, the artificial
inteligence is able to find a safe path through traffic. The perception system will be
described in greater detail in the following sections. The following section introduces the
sensor concept, followed by the object-based data fusion and end with the grid based
fusion of the drivability.

4.1.1 Sensor Concept

A variety of sensor types originating from the field of driver assistance systems were
chosen to provide detection of static and dynamic obstacles in the vehicle’s surroundings
as depicted in Fig. 5:

10

e Dark green: A stationary beam LIDAR sensor placed in the front and rear of the
vehicle, have a range of approximately 200 meters with an opening angle of 12
degrees. The unit has an internal preprocessing stage and thus delivers its readings
in an object oriented fashion, providing target distance, target width and relative
target velocity with respect to the car’s fixed sensor coordinate frame.

e Red: 24 GHz radar sensors were added to the front, rear, rear left and right side
of the vehicle. While the center front and rear sensors provide a detection range
of approximately 150 meters with an opening angle of 40 degrees, the rear right
and left sensors function as blind-spot detectors with a range of 15 meters and an
opening angle of 140 degrees due to their specific antenna structure. The front
sensor acts as a stand-alone unit delivering object-oriented target data, such as
position and velocity through its assigned external control unit (ECU). The three
radar sensors in the rear section operate as a combined sensor cluster using an
additional ECU, providing object-oriented target data in the same fashion as the
front system. From the perspective of the post processing fusion system, the three
rear sensors can therefore be regarded as one unit.

e Blue: Two Ibeo ALASCA XT laser scanners were installed in the vehicle’s front
section, each providing an opening angle of 240 degrees with a detection range of
approximately 60 meters. The raw measurement data of both front laser scanners
is preprocessed and fused on their corresponding ECU, delivering complex object-
oriented target descriptions consisting of target contour information, target velocity
and additional classification information. Additionally, the raw scan data of both
laser scanners can be read by the fusion system’s grid-based subsection.

e Purple: One Ibeo ML laser scanner was added to the rear side, providing similar
detection capabilities as the two front sensors, with a reduced opening angle of 180
degrees due to its mounting position. All Ibeo sensors are based on a four-plane
scanning principle with a vertical opening angle of 3.2 degrees between the top and
bottom scan plane. This opening angle enables smaller pitch movements of the
vehicle to be covered.

o Green: Two Sick LMS-291 laser scanners were mounted on the vehicle’s front roof
section. These scanners are based on a single-plane technology. They were set to
measure the terrain profile at 10 and 20 meters, respectively. The view angle was
limited to 120 degrees by software.

e Light blue: A stereo vision system mounted behind the vehicle’s front window
covers an area of approximately 60 degrees within a range of 50 meters, providing
3-dimensional terrain profile data for all stereo vision points retrieved. A simple
classification into the driveway, curb and obstacles classes is also available.

e Orange: A USB-based color mono camera installed on the front roof section, cov-
ering an opening angle of approximately 60 degrees.

The sensors view areas are shown in Fig. 8. These view areas overlap for a more
reliable view of the environment.

11

60 T T T T
. IBEO front -
Rear s s IBEO rear -
i SMS front -
L . ron
= e IDIS rear
20
T
o
ie]
8 of
=
g
w
2
20 |
-40
Front
60 1 1 1 1
-100 -50 0 50 100 150

Distance to car

Figure 8: Sensor view areas.

The sensor architecture described reflects the hybrid post-processing scheme applied.
While the first four sensors deliver their data in an object-oriented fashion and are there-
fore treated within the system’s object tracking and data fusion stage, the three last
sensors described are evaluated based on their raw measurement data in the grid-based
subsection. A distributed data fusion system consisting of three interconnected units was
set up. In order to equally balance the available computing power, the object tracking
system was split into two independent modules, covering the front and rear sections in-
dependently. Therefore, two automotive computers carry out data acquisition and data
fusion of the front and rear object detecting sensors, while the third PC is used to fuse
the raw sensor readings of the Sick scanners, stereo vision system and mono color camera
as shown in Fig. 9.

4.1.2 Object Tracking Fusion

The object fusion system is based on a pipes and filters pattern as depicted in Fig. 10.
All incoming sensor data is queued and then processed sequentially using a first in - first
out strategy. Within the first step, data association is carried out in order to assign
incoming sensor objects to their corresponding tracks in the fusion system that are taken
from a real-time track database. In case of a positive match between an existing track
and incoming sensor object, this pairing is then pushed into the processing queue of the
system’s Extended Kalman Filter in order to correct the track with new measurement
data. If no match can be found, the sensor object is regarded as a potential new target
and pushed into the pretracking system. Within pretracking, sensor data is justified
against time and all other sensors taking into account sensor redundancy where applicable.

12

Z Cr. C .
o

Object Data Surface Data, Classification

Drivability,

o Height Profile
=
)
=
w

Object Data Classification Surface Data

Color
Analysis
Y 7'y

= 1

Figure 9: Fusion architecture.

Pretracking and data association will be described later in greater detail.

Laserscanner Front Laserscanner Rear Radar Front Radar Rear Lidar Front Lidar Rear

v \ \ v \ v

Data Acquisition, Timestamping and Transformation

v v v v

Fusion Input Queue

Sensor Sweeps

Pretracking

Pretrack Database

Track
Pretrack ID 0 Initialization Track ID 0
Pretrack ID 1 Track ID 1
Pretrack ID 2 -—p Track ID 2

Pretrack ID 3 Track ID 3

Data Association

Figure 10: Object fusion system architecture.

If a sensor object has reached a certain level of justification, a new track will be
13

instantiated and pushed into the real-time track database. Parallel to data association,
pretracking and final object tracking, a track management unit periodically scans the
track database for “dead” tracks - i.e. fusion objects that have not been updated for
a certain amount of time. In addition to this garbage collection, all valid tracks are
compared to each other for track merging and track splitting, which is necessary to handle
situations including a passenger entering or leaving his vehicle or any other situation
where two objects in the real world converge or split. Instead of transferring a whole
track database image to downstream modules, create, update and delete messages of the
track database are issued via the network. Every client is then capable of maintaining
it’s own track database. Therefore, network load can be significantly reduced without
any loss of information.

Data Association and Pretracking Data association and pretracking have a key
functionality within Caroline’s fusion system. Imperfect data association leads inevitably
to incorrect tracks, whereas incorrect track initialization during pretracking leads to im-
perfect data association, since correct tracks and false alarms will then compete for in-
coming measurement data. With this central position, the association and pretracking
stage dominates the state estimator in the main tracking stage, since no state estima-
tor can transform falsely associated sensor readings into useful update information for
a track. In classical tracking approaches where objects are mostly described through a
state vector consisting of a generalized object position, velocity and, if applicable, fur-
ther derivatives of these quantities, data association can be performed in a point-to-point
matching process.

Within Caroline’s fusion system, these approaches had to be extended in order to han-
dle spread objects with complex shapes. Three different types of sensor objects have to
be processed: complex contours delivered by laser scanners, line-shaped objects delivered
by the LIDAR system and classical point-shaped objects received from radar sensors. It
is not possible to define a common general object position seen by all sensors, since each
sensor will most likely see the target differently. For example the point of reflection de-
livered from a radar is unknown compared to precise contour measurements gained from
a laser scanner. Additionally, as the vehicle moves through the real world, the point of
reflection of each sensor type moves on the outline of a real-world object. Therefore a
multi-point track model was chosen, describing a detected object by an arbitrary number
of contour points and postulating a common movement vector following a rigid body
assumption. This way each contour measurement can be matched to the tracked contour
point with the best fit. A two-staged data association process was set up, with the first
stage serving as a justification as to whether or not track and measurement describe
the same real-world object and in the second stage then calculating the optimal contour
association between measured and tracked object points. Within stage one, a weight-
ing function counting for the minimum Euclidian distance and similarity of velocities is
calculated,

w;j = a-minf|zl, — x|, Yk, 1] + b v — v (1)

with w;; being a scalar weight for association between track ¢ and measurement j

with tracked and measured velocity vectors v;, v;, @i, z] being the k™ and I"* contour
point position of track ¢ and measurement j and a, b serve as tuning parameters. A

14

threshold for this weight is further defined and an association below that threshold level
will be pushed into stage two.

In stage two, an optimal match between all measured and tracked contour points is
calculated based on an association matrix ,

ot — 2] 2 -]
Q=1 2)

jaf, =il . e —

Optimization can be carried out with standard algorithms such as the Hungarian /Munkres
method, Nearest Neighbor or similar approaches. We used the fast Minimum-algorithm.
This two-staged association process avoids unnecessary computational load on the sys-
tem, since unlikely associations will be filtered out in stage one while the computational
challenging minimization is only carried out for positive matches.

During pretracking, incoming sensor data is first associated with preliminary track
objects (pretracks) using methods similar to those described above. A pretrack carries
along a vector of sensor assignments, storing for each sensor type the last assigned sensor
object id. A simple Kalman filter based on a constant velocity motion model is calculated
for each pretrack to update its position given by incoming sensor data. In addition to
the vector of sensor assignments, an update counter is carried along storing the number
of positive association events. Taking into account sensor redundancies read from a con-
figuration file, a threshold for track activation is evaluated based on this update counter,
depending on the level of redundancy in the affected observation area of that object. A
simple description language was implemented to efficiently model these redundancies and
to influence the update count threshold for track activation, e.g.:

polygon={0,2;10,2;10,-2;0,-2}
modifyCount=2000
condition=(RADARFront && !(LASERFront || LIDARFront)),

which means for the fusion system ”Activate track in a 2 x 10 meter, box-shaped view
area after 2000 positive matches when it is only seen by the front radar system and not
by the laser scanners or LIDAR sensors®, which, in this case, serves as protection against
random, unstable false alarms from the radar sensor directly in front of the vehicle.

Tracking and Data Fusion For the main tracking algorithm, a model-switching Ex-
tended Kalman Filter, based on two track motion models was implemented. A six-
dimensional motion model describes fast-moving objects using a state vector,

L1.n

Y1..n
6D

€ 0o

with z;_, and y;_,, being the x and y coordinate of the n contour points, the common
velocity, acceleration, course angle and course angle velocity with respect to the global

15

earth-fixed reference frame. For slow or static objects, a simpler four-dimensional state
vector was chosen,

$4D Y1.n (4)

thus taking into account that the majority of detected objects are of a rather static na-
ture and distribution of available sensor information in unnecessary many state variables
is suboptimal in that case. As seen in equations (4) and (5), the classical state vector has
been enriched by the number of contour points, thus making it necessary to extend the
Kalman Filter algorithm (see |[Kal60| for reference) to handle multiple positions within
the same state vector. Similarly, we define the sensor measurement vector for a sensor
object consisting of m contour points,

T1..m
_ Yi..m
y=1 " (5)
Uy

with x1, y1, vz, vy being measured contour point z- and y-coordinates as well as z- and
y-velocity components with respect to the global earth fixed reference frame. Postulating
a common position noise covariance for all contour points within track and measurement,
the update algorithm can be extended as follows:

zk(v + 1) = f(ak(v))

Pw+1v)=F'-P-F+Q

Sea = yi(v +1) = h(zk(v + 1v))

Sw+1)=H-Plv+1jv)-H ' + R

Kw+1)=Pw+1jv)-H' - S(v+ 1)
re(v+1) = K(w+1)-sp(v+1) (6)

with xz;, being the track state vector regarding contour point k, f(z) the nonlinear
system transfer function, P the common state covariance matrix, F' the system transfer
Jacobian, () the system noise covariance, si; the innovation vector of tracked contour
point k compared with measured point [of the associated sensor object, y; the sensor
measurement vector regarding measured point [, h(x) the nonlinear system output func-
tion, S the common innovation covariance matrix, H the system output Jacobian, R
the estimated measurement noise, K the Kalman gain in this update cycle and ry; the
correction vector for tracked contour point k£ getting updated with measured point [.

The tracked contour points can then be updated by adding the first two components
of the associated vector 7. In order to calculate updated common velocity, acceleration,
course angle and course angle velocity in the six dimensional movement model, the mean
value for vector ry; is calculated over all given contour point associations,

N

1
T'mean = N Z Tkl (7)

k=1
16

with N being the total number of acquired contour point matches within the second
stage of data association. Corrected common values can then be acquired by adding the
last four components of vector 7,,c.., to the corresponding elements in the track state
vector.

Obviously, by postulating a common system and measurement noise covariance for
all contour points, Kalman gain can be computed once per update cycle. While it would
theoretically be possible to calculate a separate Kalman gain for each tracked contour
point and therefore removing the limitations to system and measurement covariance, this
would lead to a N-times bigger computational load, since matrix inversion of the system
innovation covariance matrix is the most costly part of the algorithm. In this case, the
algorithm would simply calculate a separate Kalman filter for each contour point, which
is not practically realizable in a real-time application. In the approach described we have
no significantly higher computational effort compared to a standard EKF, while at the
same time realizing spread-contour functionality and removing the need for a stable point
of reference for tracked objects.

In order to prevent the track from being flooded with contour points, a garbage
collection mechanism was installed by carrying along update counters for each contour
point, which stores the last update timestamp and the overall number of updates counted
to that point in time. In this manner, inactive contour points can be detected easily and
removed from the track’s point list.

Object splitting and termination Because of the track’s polyline object model, it
is necessary to implement a track splitting algorithm. If there is no such method, one
track can collect points from many objects and grow to a rather huge but meaningless
track. For example, a person dropping off a car and moveing away would still be part
of the car track because of the data association algorithm depiced in Fig. 11. When the
person just dropped off and is still near the car, it will become one track. After moving
away from the car, the contour points will still be updated because there is an object at
the position of the car and the person is also still there. Between these two objects there
is nothing but the polyline from the track still describing an outline of an object.

To detect these false tracks, an algorithm was developed to split such tracks. The basic
idea is to examine the objects based on the raw sensor object data and find indepented
sets of objects. These independent sets will become the new tracks. Normally, there
are no such sets but in the event of an unsplit track, there are two or more partitions.
Polygonal objects around the track will be described as a planar undirected two colored
graph. The algorithm contains the following steps:

1. Build planar undirected colorable rectangular graph. set the color of every node to
black.

2. Set the polylines of every sensor object of the track to white.
3. Search for independend sets in the graph|CLRS02].

4. If there is more than one set found, build new tracks from the points describing the
outlines.

17

0

m o=
- .
-

Figure 11: Person who drops off a car. From left to right: Person still in the car,
person just dropped off, person moves away. From top to bottom: Reality, track without
splitting, track after splitting.

The algorithm runs periodically during track garbage collection. Although complex-
ity depends on the maximal area (a) covered by a track (O(a)), this algorithm can be
implemented efficiently with graphic libraries.

4.1.3 Grid-based fusion

In contrast to the object tracking subsystem, the grid fusion system does not describe
agents in the vehicle’s environment with discrete state vectors, but instead discretizes the
whole environment into a rectangular matrix (grid) structure. Each grid cell carries a
number of assigned features:

e a height value expressed in the global earth fixed reference frame,
e a gradient value describing the height difference to neighboring cells,

e a set of Dempster-Shafer probability masses counting for the hypotheses undrivable,
drivable and unknown,

e a status flag stating whether or not measurement data has been stored within the
corresponding cell and

e an update time stamp storing the last time a cell update was carried out.

Data Structure The biggest challenge with grid based models in an automotive en-
vironment is the need for real time operation. High maneuvering speeds in automotive
applications require update rates greater than 10 Hz, which is almost too low since this

18

equals a travel distance of 1.4 meters at normal urban speeds. The approach of discretiz-
ing the environment into grid cells leads to significantly high memory requirements and
therefore calls for efficient data structures. As an example, the storage of a view area of
only 100 x 100 meters with a resolution of 25 centimeters generates 160,000 grid cells.
Assuming a 4-byte floating point value for each feature as described above, this grid ex-
tends up to 3 MByte. Together with an update rate of 10 Hz this leads to a constant
data throughput of 256 MBit/s, which in any case is more than the standard automo-
tive bus infrastructure would be able to handle. Efficient algorithms and data reduction
prior to serialization is therefore the key to a successful application. For addressing these
issues we implemented a rolling grid data structure wherein the vehicle’s own position is
a pointer to the corresponding grid cell. This position will be regarded as virtual origin
for all incoming sensor readings, which can then be subsequently accessed by moving
through the double linked data structure relative to that virtual origin. The main grid
is again subdivided into sub grids whose size match the processor’s caching mechanism
for optimal usage of the available computing resources. While it would theoretically be
possible to make the surface large enough to cover the expected maneuvering area, this
would lead to extremely high memory usage and is therefore not feasible. Instead, when
the vehicle moves through the world, the reference point shifts along the double linked
spherical list. As soon as it crosses the border from one sub grid to the next, the corre-
sponding sub grids at the new horizon of the data structure are cleared and are therefore
available for new data storage.

Treatment of laser and stereo vision point data As the first step within grid data
fusion, the 3-dimensional point clouds received from the laser scanners and stereo vision
system are transformed into the global earth fixed reference frame taking vehicle attitude
into account (roll, pitch and yaw) as acquired from the GPS/INS unit and sensor-specific
calibration information. The accuracy of these transformations is crucial to subsequent
post-processing. Vehicle height as delivered by the GPS is especially important and
is therefore subject to further filtering and justification. For each measured point, the
corresponding grid cell is retrieved and a ray tracing algorithm (Bresenham) is carried
out to update all cells from the sensor coordinate system’s origin to the measured target
point. Several versions of the Bresenham algorithm are described in the literature, in this
case we will introduce the 2D version following Pitteway [PM67] for reasons of simplicity.

The lines are traced similar to the functionality of a plotter, which is basically the
origin of that algorithm. On the way through the traced lines, each cell passed is updated
according to following rules:

e If the cell lies on the path between sensor origin and measured target point and
it’s height value exceeds the current Bresenham line height value, reduce the stored
value to that of the current Bresenham line.

e If the cell is the end point of the Bresenham line, store the associated height value.

e In both cases, store update time stamp and mark that cell as having been measured.

The grid is updated following the direct optical travel path of any laser ray (or virtual
stereo vision ray) starting at the sensor origin and ending at the target point as depicted

19

in Fig. 12. This model follows the assumption that any obstacle would block the passing
optical ray and therefore any cells on the traveling path must be lower than the ray itself.

sensor origin

new values

old values target point

Figure 12: Ray update mechanism.

Data Fusion Parallel to entering the 3-dimensional point data acquired from laser
scanners and stereo vision, vision-based classification is processed using a Dempster Shafer
approach [Sha76, Sha90|. A sensor model was created for each data source, mapping the
sensor specific classification into the Dempster Shafer probability mass set, which can then
be fused into the existing cell probability masses using Dempster’s rule of combination,

mi(4) = m() Dma() = o 3 me(Byma(O), (®)

BNC=A#0)

with m., m,, being the cell and measurement probability mass set and m; the combined
new set of masses for the regarded cell, while the placeholders A, B and C' can describe
any of the three hypotheses drivable, undrivable and unknown. The term K expresses
the amount of conflict between existing cell data and incoming measurement, with

K=" mdB)mu(C). (9)

BNC=0

The mass set m,, has to be modeled out of the acquired sensor data.

With respect to the stereo vision system, which is capable of classifying retrieved point
clouds into the classes road, curb and obstacle, this mapping is trivial and can be done
by assigning an appropriate constant mass set to each classification result. The exact
values of these masses can then be subject to further tuning in order to trim the fusion
system for maximum performance given real sensor data.

In the case of the mono vision system, Caroline assigns each pixel in the retrieved
image a drivability value P; between 0.0 representing undrivable and 1.0 representing fully
drivable; a mapping function is then applied, which creates the three desired mass values

20

D: drivable, U: undrivable and N: unknown, that can be either drivable or undrivable
as follows:

Mm(D) = Dz - Pa,
mm<N) = (1 _Dmax)7
mm(U) = 1 —=mpu(D) —mu,(N). (10)

The value D, will serve as a tuning parameter, influencing the maximum trust placed
into the mono vision system and based on the quality of its incoming data. Both, the
classification mechanism of the stereo vision system would be beyond the scope of this
paper and will therefore not be explained in detail. Basically, classification within the
stereo system is based upon generating a mesh height model out of the point cloud
obtained and applying adaptive thresholds to this mesh structure in order to characterize
roadway, curb and obstacles. The mono vision system is based on a similar approach to
[TMD*06].

Prior to mapping the mono vision data into the grid data structure, the image must
be transformed into the global world reference frame using the known camera calibration
[HS96| and height information which can easily be retrieved from the grid itself.

The creation of a sensor model for the 3-dimensional height data is more complex:
First, a gradient field is calculated from the stored height profile. In Caroline’s grid fusion
system, the grid is mapped into image space by converting into a grayscale image data
structure, with intensity counting for cell height values. Subsequently, the Sobel operator
is applied in both image directions.The results of both convolutions are summed and -
after proper normalization - transformed back into the grid structure, storing the gradient
values %gy for each grid cell. Any existing obstacle will usually lead to a bigger peak
within the gradient field, which can easily be detected. During the process of forward
and reverse transformation, the grid structure in- and out of a grayscale image would
initially appear to be redundant, because the gradient operator could easily be applied
to the height field itself. Yet, by transforming the information into a commonly used
image format, the broad variety of image processing algorithms and operators found in
standard image processing toolkits, such as the OpenCV library [Ope07| can easily be
applied, thereby significantly reducing development time.

The acquired gradient values will then subsequently be mapped into a Dempster-
Shafer representation, which leads to the desired sensor model combining all acquired
height values. Similar to the method with the mono vision system, a mapping function
is defined as follows:

p
oh
Dmax: axay ‘ S GD"L(Lw
h
oh
L 0’ 0xdy > GUmin
(
Oh
07 Bcpay — GDmaz
_ Umaz] on | oh
mm(U> - GUmin_GDma:r (0xdy GDmaz) ? GDmaz < oxdy | — GU’mzn
oh
L Umaxa Dx0y > GUmm
Mm(N) = 1—my(D)—m,(U), (11)

21

with Dypnar and Upg, serving as parameters for maximum drivability /undrivability as-
signed to the gradient field, Gp, . being the maximum gradient value that is still con-
sidered to be fully drivable and Gy, the minimum gradient value that is considered to
be fully undrivable. By carefully tuning those four parameters, it is possible to suppress
unwanted smaller gradients resulting e.g. from unimportant depressions and knolls in the
road while supporting higher gradients as originating from curbs or berms in order to
correctly fuse this information into the grid cells by using Eq. 8.

4.2 Vision

Caroline’s computer vision system consists of two separate systems. The first is a monoc-
ular color segmentation based system that classifies the ground in front of the car as
drivable, undrivable or unknown. It assists in situations where the drivable terrain and
the surrounding area (e.g. grass, concrete or shrubs) differ in color. The output of this
algorithm contributes to the Grid Based Fusion as described in section 4.1.3. The second
vision system is a multi-view lane detection that identifies the different kinds of lanes
described by DARPA, such as broken and continuous as well as white and yellow lane
markings. Using four high-resolution color cameras and state-of-the-art graphics hard-
ware, it detects its own lane and the two adjacent lanes to the left and right with a field
of view of 175 degrees at up to 35 meters. The output of the lane detection algorithm is
directly processed by the artificial intelligence.

4.2.1 Lane Detection

initial
Ego State i Fusion Objects parameters

Voptional)

— a g P aié
Image Acquisition faw Color Conversion & Top view ealur Lane
Image Feature Image Lane Maodel

«——>» and Camera Control Multi View > ; Rl
Detection Fittin:
via IEEE1394 | Fusion ' 1¥ing Ouput

CPU

&

Images

229

[

ﬁ%
2
c

CPU

Figure 13: The four stages of the lane detection algorithm.

Detecting lane markings on roads in an urban environment is a difficult but very im-
portant task. While concepts exist that depend on additional markings, such as magnetic
bands in the street, a more useful method must make intelligent use of what is available
on today’s roads. Towards this goal, we developed a lane detection system that is capa-
ble of analyzing several high-resolution images simultaneously and in real-time. Our lane
fitting algorithm uses a very versatile lane model and is robust with respect to outliers
and artifacts. It also takes into account lane markings of adjacent lanes. It copes with
different road setups, lane markings and lighting situations. The lane detection process
is divided into four parts, as shown in Fig. 13. First, the raw images are downloaded
from the cameras via the IEEE1394b interface. Second, they are uploaded to graphics
hardware, the color information is retrieved from the raw Bayer pattern, and the images

22

are transformed into a single top view perspective, Fig. 14. Third, lane marking features
are detected in the image, Fig. 16. In the last step, a lane model is adjusted to match
the features detected.

Data Acquisition Three cameras with field of view of 58 degrees cover the area in
front of the car. A 22 degrees telephoto lens camera provides a high-resolution view of
the street ahead of the car. The four 1376x600 8-bit raw Bayer images are synchronously
acquired via the IEEE1394b interface at 14 frames per second. The images are uploaded
to the graphics card and converted to the RGB color space using bilinear interpolation. As
the lane fitting algorithm works in a global coordinate system, the position and rotation
of the vehicle, also referred to as Ego State, must be available. A transformation function
fego © Pear ™ Puworia can be defined if the Ego State is known, where p.,, is a point in
the car’s reference system, and pyoq is @ point in a global Cartesian reference system.
An Inertial Measurement Unit corrected by a GPS signal was used to generate the Ego
State.

Multi-View Fusion Because local changes of the light intensity are an indicator for
white lines, and local saturation changes indicate colored lane markings, the RGB images
are converted to the HSV color space. This color space encodes saturation and color in
separate channels. Knowing the intrinsic and extrinsic parameters of the camera, and
including the orientation of the vehicle (pitch and roll), a lookup function that converts
top view coordinates to image coordinates can be used to create a single HSV top view
image. The lookup operation is applied to each source image. In regions where the
projected images overlap, precedence Iicie > Ipiddie > liept > Irigne 15 maintained as
shown in Fig. 14. The region of interest covers the area of up to 30 meters in front of the
vehicle and 12 meters to the left and right at a scale of 35 pixels per meter.

Features Lane markings can be described as a thin pattern of local differences of the
road surface that cover long distances. Therefore, the basic concept underlying feature
detection involves identification of these local differences in regions of 8x8-pixels that
resemble road patches of approximately 25 by 25 centimeters. Analyzing the HSV top
view image, the feature detection’s output is a downsampled feature image that encodes
the quality, direction and color, i.e., white or yellow, of the lane features in Fig. 16. As lane
markings exist in various colors, qualities as well as widths, and appear differently under
changing lighting conditions, only few stringent assumptions apply. When analyzing the
top view image for features, we check three criteria that must be present:

1. The local contrast vg;rs must exceed a certain threshold. The local contrast is the
difference between the local minimal and maximal value vg;ff = Vmaz — Vmin-

2. Analyzing a local adaptive histogram, the distance bg s between the two largest
bins bpign, and by, must exceed a certain threshold. This is because it can be
assumed that b, contains pixels depicting the street and by, identifies the lane
marking.

23

(a) RGB top view (b) HSV top view

Figure 14: The four different images (a, RGB color space used for visualization) are
merged to a single HSV top view image (b).

3. The pixels in bp;g, must have a recognizable shape and orientation. For several
discrete orientations, the ratio of the variances of the pixels’ x- and y-coordinates
is checked.

A detailed description is given in Alg. 1. As this algorithm is prone to discretization
errors, supersampling improves the quality of the feature detection.

Lane Model The lane model consists of connected lane segments. Each segment s;
is described by a length I; (given parameter), a width w; and an angle d; = o; — ;1
describing the difference of orientation between this segment and the previous one as
shown in Fig. 18. The first segment is initially placed on the current coordinates of the
vehicle and facing in the driving direction, assuming that the vehicle is actually located
on the street. Knowing the position ¢y of the initial segment as well as the lengths [;
and the angular changes d; of all segments, the position p; and global orientation «; of
each segment can be computed. Each segment contains information whether the vehicle’s
lane is confined by lane markings and whether additional lanes to the left and right exist.
Straight streets, sharp curves and a mixture of both can all be described by the model.

Lane Fitting The main goal of the lane fitting algorithm is to find a parameter set
for a lane model that explains the features found in the current top view image and the
previous frames. In order to create a global model of the lane, all feature points are
mapped to world space coordinates and inserted into a list [,. This is done using the
function fego : Dear — Dworta defined by the current Ego State. Old data, i.e. feature
points gathered during previous frames, may be kept if the features of a single image are
too sparse. For each frame, the existing lane model or an initial guess is used to define
four regions of interest as shown in Fig. 17(a). These are the regions expected to contain
the own lane’s markings and the lane markings of the adjoining lanes. If a feature is

24

N =

© 00N AW

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Data: An 8x8 region of a HSV top view image, thresholds t.on, thist, tair and tey
Result: A feature quality g, direction a € {0,22.5, ...,157.5} and color
¢ € {white, yellow, undecided}

for the saturation and lightness channel do
Vdiff = Umaz — Umin; Umaz a0 Upin are the maximal and minimal values of the current
channel
if vgiff < teon then

| break;
end
compute adaptive histogram,;
determine two largest bins bpgn and biow, Fig. 15(b) ;
baifs = bnigh — biow;
if bgirs < thist then

| break;
end
set of pixels prign = pixels in bpign;
determine center of mass R of ppign;
initialize 7,4, and G.,q. to 0;
for i = 0;i <= 157.5;i =i+ 22.5 do

‘ rotate ppign around R by ¢ degrees. determine ratio of variances r = Var(X).

Var(Y)’

end
if ez < tgir then
| break;
end
label this region as a feature;
if current channel is lightness then
‘ Quhite = bdsza Gwhite = Gmax
else
‘ Qyellow = bdiff; Qyellow = Umaz
end

end

if Quhite > teol & Quhite > Qyellow then
‘ c = white; a = ayhite

end

if Qyellow > teol & Qyellow > Quwhite then
‘ c= yellow; a = Gyellow

end

q= max(Qwhitm qyellow);

Algorithm 1: Feature detection algorithm.

25

%

50
© —
30
20
10
ol0 3 t :|ITZ\?glue
VminI IVmax
low high
(a) 8x8 regions are analyzed (b) 8 bin histogram of the 8x8 region

Figure 15: 8x8-pixel regions of the top view image (a, up) are tested for possible features.
The distance between the two largest bins b, (b, blue) and by;g, (b, red) of the histogram
determines the quality of the feature. The pixels gathered in bp;4, must be arranged in a
directed shape (a, red area).

.._.-.----"""!‘.

undecided -
M white ~
M yellow
(a) direction information (b) color information (green (¢) quality information (blue
(red channel) channel) channel)

Figure 16: The direction (a), color (b) and quality (c¢) of the features are encoded in an
RGB image downloaded from the graphics card. For visualization purposes, the channels
encoding the direction (a) and color (b) are colorized.

26

outer-right o et et [new features
W discarded "... 7. - " » = [od features

(a) labeling and discarding (b) mixing

Figure 17: Regions of interest (a, blue boxes) determine to which lane marking features
are assigned. Afterwards, old and new features are mixed (b).

inside such a region, it is labeled as outer left, left, right or outer right. Otherwise, it
is discarded. Afterwards, features from previous frames are mixed with the new data as
depicted in 17(b).

As the first currently visible segment sy of the lane model is determined, older seg-
ments are no longer considered. If the list of lane segments is empty, it is initialized with
So «— sy. Starting from sy, each segment s; is estimated (or reestimated if it has previ-
ously been estimated). Therefore, an initial guess as to the orientation «; of s; is made as
shown in Fig. 18. All local features relevant for estimating s; are rotated by «; around the
starting point p; of s;. A RANSAC algorithm is used to estimate the parameter d; and
w;: Tteratively, two feature points p, and p, are chosen. Assuming that they are located
on the lane markings they were labeled for, the gradient g; = m;/l; as well as the width
w; are derived from their coordinates. All features that are also sufficiently described by
g; and w; are counted as inliers. This process is repeated n times and the parameter set
with most inliers is used to define s;. A quality function ¢ takes into account the ratio
of inliers and outliers, the amount of inliers, the quality of the features and states the
quality of the segment. The quality is computed for every region of interest (outer left,
left, right and outer right). If the maximum of these qualities exceeds a threshold t,,
the segment is considered to be valid and the next segment s;,; is estimated. After all
segments are estimated as shown in Fig. 19, a proposal about the lane markings’ colors
can be made by looking at the inliers’ average color.

Results and Evaluation The algorithm was thoroughly tested on several sites in
northern Germany and Texas. A frame rate of 10 fps could be maintained using a 2 GHz
Intel Core 2 Duo with a GeForce 7600 GTS graphics card. The testing sessions included
different weather and lighting conditions. The amount of false positives was reduced
significantly by utilizing the vehicle’s other sensors. The objects detected by lidar and

27

(a) estimating segment, s; (b) RANSAC fitting

Figure 18: p;, a;, l; and [y, identify the features relevant for s;. After rotating around
a;, a RANSAC fitting eliminates outliers among the features.

Figure 19: The lane model reprojected onto the original images.

28

radar sensors were used to mask out regions in the feature image where other cars, walls,
cones and poles caused irritating artifacts in the top view image.

4.2.2 Area Processor

The Area Processor consists of a single IDS color camera whose images are interpreted by
a color segmentation algorithm suitable for urban environments. This algorithm separates
an image into areas of drivable and non-drivable terrain. Assuming that a part of the
image is known to be drivable terrain, other parts of the image are classified by comparing
the Euclidean distance of each pixel’s color to the mean colors of the drivable area in
real-time. Moving the search area depending on each frame’s result ensures temporal
consistency and coherence. Furthermore, the algorithm classifies artifacts such as white
and yellow lane markings and hard shadows as areas of unknown drivability. Although
Caroline is able to perform basic driving tasks without this algorithm, it is needed in
situations when terrain cannot be distinguished by other sensors, i.e., sections without
proper lane markings, streets without high curbs and off-road tracks.

Related work As a foundation for the area detection algorithm we used the real-time
approach suggested by Thrun et al. [TMDT06] in the 2005 DARPA Grand Challenge. The
basic idea is to consider a given region in the actual image as drivable. The predominant
mean color values in that area are retrieved and compared to the pixel values in the
entire image. Similar pixels are marked as drivable. The algorithm was designed for
off-road terrain, therefore it cannot be applied to urban scenarios without fundamental
modifications. We will describe the algorithm in the next section. The Expectation
Maximization (EM) algorithm used for color clustering in this approach is thoroughly
described in [DHT73] and [Bil97|. Besides the EM algorithm, the KMEANS algorithm
that we used during the competition is also suitable for color clustering, as described in
[GBO05]. An algorithm similar to the one mentioned above points out the advantage of
other color spaces than RGB [UNO00], e.g., the HSI space.

The Stanford University algorithm for detecting drivable terrain The main
idea of the algorithm is to use the output of the laser scanner, normally a scan-line,
which is integrated over time to a height map in world coordinates. A polygon is defined
that covers an area in front of the car identified as level and therefore as a drivable surface.
This polygon is transformed into image coordinates from the camera and clipped to the
image boundaries. The resulting polygon is considered as the area that is drivable. In
this area the pixels’ color values are collected and clustered by color, for example bright
grey and yellow. These color clusters are compared to the color values of each pixel
in the image using distance measurements in the color space. If a resulting distance is
smaller than a given threshold, the area comprised by the pixel is marked as drivable.
The main benefit of the algorithm is that the range in which drivability can be estimated
is enhanced from only a few meters to more than 50 meters.

Problems arising in urban and suburban terrain Designed for competing in a
60 mile desert course, the basic algorithm succeeds well in explicit off-road areas, which

29

a -.-i. L o .‘. L

(a) original picture (b) normal drivability grid

Figure 20: The drivability grid (b) depicts the output of algorithm, the results differ
from black (undrivable) to white (drivable) . A yellow line (a) is marked as undrivable
(b, black) because the color differs by too much from the street color.

are limited by sand hills or shrubs. When tested in urban areas new problems occur,
because there are streets with lane markings in different colors or tall houses casting long
shadows. The yellow lane markings are often not inside the area of the polygon Psconner
(output of the laser scanner), so they are not detected as drivable. Especially non-dashed
lines prohibit a lane shift as shown in Fig. 20 and stop lines seem to block the road.

Another problem are shadows cast by tall buildings during the afternoon. Small
shadows from trees in a fairly diffuse light change the color of the street only slightly
and can be adapted easily. But huge and dark shadows appear as a big undrivable
area as shown in Fig. 21. Even worse: Once inside a shadowed area, the camera auto
exposure adapts to the new light situation, such that the area outside the shadow becomes
overexposed and appears again as a big undrivable area as depicted in Fig. 22.

Another problem during the afternoon is the car’s own shadow, in this paper ref-
erenced as "egoShadow", when the sun is behind the car. Sometimes it is marked as
undrivable, sometimes it is completely adapted and marked as drivable, but the rest of
the street is marked as undrivable as shown in Fig. 23. A fourth problem occurs when
testing on streets without curbs but limited by mowed grassy areas. The laser scanner
does not recognize the grass as undrivable, because its level is about the same as the
street niveau. This causes the vehicle to move onto the grass, so that colors are adapted
by the area processing algorithm, and consequentially keeps the car on the green terrain.

Alterations to the basic algorithm Differing from the original algorithm, our imple-
mentation does not classify regions of the image as drivable and undrivable. The result
of our distance function is mapped to an integer number ranging from 0 to 127, instead
of creating a binary information via a threshold. In addition, a classification into the
categories '’known drivability’ and 'unknown drivability’ is applied to each pixel. These
alterations are required because the decision about the drivability of a certain region is
not made by the algorithm itself, but by a separate sensor fusion application. For the
sake of performance the KMEANS Nearest Neighbors algorithm was chosen instead of
the EM-algorithm, because the resulting grids are almost of the same quality but the
computation is considerably faster. Tests have shown that better results can be achieved

30

(a) original picture (b) normal drivability grid

Figure 21: Large, dark shadows (a, left) differ too much from the Street Color (b, dark).

(a) original picture (b) normal drivability grid

Figure 22: Exposure is automatically adapted inside shadows (a). Areas outside the
shadow are overexposed and are marked as undrivable (b, dark).

(a) original picture (b) normal drivability grid

Figure 23: The vehicle’s own shadow can lead to problems (a), for example if only the
shadowed region is used to detect drivable regions (b, white).

31

by using a color space that separates the luminance and the chrominance in different
channels, e.g. HSV, LAB, YUV. The problem with HLS and HSV is that chrominance
information is coded in one hue channel and the color distance is radial. For example, the
color at 358 degrees is very similar to that one at 2 degrees, but they are numerically very
far away from each other. Thus a color space is chosen where chrominance information is
coded in two channels, for example in YUV or LAB, where similarity between two colors
can be expressed as Euclidean distance.

Preprocessing To cope with the problems of large shadows and lane markings, a
preprocessing system was developed. Before the camera picture is processed, it is handed
over to the following preprocessors: White preprocessor (masking out lane markings
and overexposed pixels), black preprocessor (masking out large, dark shadows), yellow
preprocessor (masking out lane markings), egoShadow preprocessor (masking out the
car’s shadow in the picture). The output of each preprocessor is a bit mask (1: feature
detected, 0: feature not detected), which is used afterwards in the pixel classifying process,
to mark the particular pixel as "unknown", which means that the vision-based area
processor cannot provide valid information about the area represented by that pixel. In
the following, the concept of each preprocessor is described briefly:

White Preprocessor In order to deal with overexposed image areas during shadow
traversing, pixels whose brightness value is larger than a given threshold are detected. The
preprocessor converts the given image into HSV color space and compares the intensity
value for each pixel with a given threshold. If the value is above the threshold, the pixel
of the output mask is set to 1.

Black Preprocessor As huge dark shadows differ too much from the street color and
would therefore be labeled as impassable terrain, pixels whose brightness value is smaller
than a given threshold are masked out. The preprocessor analogously converts the given
image into HSV color space and compares the intensity value for each pixel with a given
threshold. If the value is below the threshold, the pixel of the output mask is set to 1.

Yellow Preprocessor Small areas of the image which are close to yellow in the RGB
color space are detected so that yellow lane markings are not labeled as undrivable but
rather as areas of unknown drivability. For each pixel of the given image, the RGB ratios
are checked to detect yellow lane markings. If the green value is larger than the blue value
and larger or a slightly smaller than the red value, the pixel is not considered yellow. If
the red value is larger than the sum of the blue and the green values, the pixel is also not
considered yellow. Otherwise, the pixel is set to % — 1. Afterwards, a duplicate of
the computed bit mask is smoothed using the mean filter, dilated and subtracted from the
bit mask to eliminate huge areas. For different areas of the image, different kernel sizes
must be applied. In the end, only the relatively small yellow areas remain. A threshold

determines the resulting bit mask of this preprocessor

EgoShadow Preprocessor When the sun is behind the car, the vehicle’s own shadow
appears in the picture and is either marked as undrivable, or it is the only area marked

32

J Pbumper Pbumper

P

search

P

search

. o _. g
" " fold Midpoint - " new Mj . new Midpoint

———

(a) dynamic polygon at time ¢ (b) dynamic polygon at time ¢ + 1

Figure 24: This Fig. shows how the dynamic search polygon (a, green trapezoid) is
transposed to the right (b) because the calculated moment is positive in z-direction.

as drivable. Therefore, a connected area directly in front of the car is identified whose
brightness value is low. At the beginning of the whole computing process a set of base
points p(z,y) is specified, which mark the border between the engine hood and the ground
in the picture. The region of interesst in each given picture is set to ¥,nqz, the maximum
row of the base points, so that the engine hood is cut off. From these base points the
preprocessor starts a flood-fill in a copy of each given image, taking advantage of the fact
that the car’s shadow appears in similar colors. Then the given picture is converted to
HSV color space and the flood-filled pixel are checked to determine if their intensity value
is small enough. Finally, the sum of the flood-filled pixels is compared to a threshold,
which marks the maximum pixel area that constitutes the car’s own shadow.

The dynamic search polygon Using the output of the laser scanner to determine
the input polygon works quite well if the drivable terrain is limited by tall objects such
as sand hills or shrubs. In urban terrain, however, the output of the laser scanner must
be sensitized to level distances smaller than curbs (10 to 20 centimeters), which becomes
problematic if the street moves along a hill where the distance is much higher. Thus, the
laser scanner polygon does not remain a reliable source especially because both modules
solve different problems: The laser scanner focuses on range-based obstacle-detection
[UNOO], which is based on analysis of the geometry of the surroundings, whereas the
vision-based area processor follows an appearance-based approach. For example, driving
through the green grass next to the street is physically possible, and therefore not prohib-
ited by a range-based detection approach, but it must be prevented by the appearance-
based system. This led to the concept of implementing a self-dynamic search polygon
which has a static shape, but is able to move along both the X- and the Y-axis in a given
boundary polygon Pyoundary- The initial direction is zero. Every movement is computed
using the output of the last frame’s pixel classification. For the computation a bumper
polygon Pyymper is added, which surrounds the search polygon. The algorithm proceeds
in the following steps:

33

Data: last frame’s grid of classified pixels, actual bumper polygon Pyymper

Result: updated position of the Polygons Pyymper

1 begin

2 Initialize three variables pixelSum, weighted Pixzel Sum X, weighted Pixel SumY to zero
3 foreach pizel of the grid which is inside the bumper do

4 count the amount pixel Sum of visited pixels

5 if drivability of the actual pizel is above a given threshold then

6 Add the pixel’s z-Position relative to the midpoint of Pyymper to

weighted Pizel SumX
7 Add the pixel’s y-Position relative to the midpoint of Pyymper to
weighted Pizel SumY
8 end
end
10 Perform the division Zmoment = weigh;‘:zzg”jf“mx and Ymoment = weigh;ffg?jf“my and

round the results to natural numbers
/* The value Zpoment gives the amount and direction of the movement of Pyumper
in zr-direction, the value Ymoment gives the amount and direction of the

movement of Pyymper in y-direction. */

11 Add the values Zmoment and Ymoment to the values of the actual midpoint of Pyymper to
retrieve the new midpoint of Pyymper

12 Check the values of the new midpoint of Ppymper against the edges of Pyoyndary and adjust
the values if necessary

13 Add the values Toment and Ymoment to the values of the actual midpoint of the search
polygon to retrieve the new midpoint of the search polygon as shown in Fig. 24

14 To prevent that the search polygon gets stuck in a certain corner, it is checked, if

Tmoment = 0 or if Ymoment = 0
/* For example if Zmoment =0, it is evaluated, if the midpoint of Ppumper is

located right or left to the midpoint of Pbmmdary; Tmoment 18 set to 1, if
Pyumper is located left, otherwise it is set to —1. An analogous check
can be performed for the Ymoment- *x/

15 end
Algorithm 2: Dynamic search polygon algorithm.

Implementation and Performance The algorithm has been implemented with the
Intel OpenCV library [Ope07|. The framework software is installed on an Intel Core 2
Duo Car PC with a Linux operating system and communicates with an IDS uEye camera
via USB. The resolution of a frame is 640*480, but the algorithm applied downsampled
images of size 160120 to attain a manually adjusted average performance of 10 frames
per second. The algorithm is confined to a region of interest of 160*75 cutting of the sky
and the engine hood.

In Fig. 25 the difference between normal area processing and processing with the black
preprocessor is shown. Without the preprocessor, the large shadow of a building to the
left of the street is too dark to be similar to the street color and is classified as undrivable.
The black preprocessor detects the shadowy pixels, which are classified as unknown (red).

The problem of overexposed areas in the picture is shown in Fig. 26, where the street’s
color outside the shadow is almost white and therefore classified as undrivable in the
normal process. The white preprocessor succeeds in marking the critical area as unknown,
so that the vehicle has no problem in leaving the shadowy area.

Yellow lane markings differ from pavement in color space so that a human driver
can easily detect them even under adverse lighting conditions. This advantage turns out

34

—_—

(a) original picture (b) normal drivability grid (c) with black preprocessor

Figure 25: The results with black preprocessor. The picture in the center (b) shows
the classification results without the black processor. In picture on the far right (c) the
critical region is classified as unknown (red).

(a) original picture (b) normal drivability grid (c) with white preprocessor

Figure 26: The results with white preprocessor.The picture in the center (b) shows the
classification results without white processor. In picture on the far right (c) the critical
region is classified as unknown (red).

(a) original picture (b) normal drivability grid (c) with yellow preprocessor

Figure 27: The results with yellow preprocessor. The picture in the center (b) shows the
classification results without yellow preprocessor. In picture on the far right (c) the lane
marks are classified as unknown (red).

35

= % AT LGOI AP

(a) original picture (b) normal drivability grid (¢) with egoShadow prepro-
cessor

Figure 28: The results with egoShadow preprocessor. The picture in the center (b) shows
the classification results without egoShadow processor. In picture on the far right (c) the
car’s own shadow is classified as unknown (red).

to be a disadvantage for a standard classification system, which also classifies the lane
markings as undrivable, as shown in Fig. 27: Lane markings are interpreted as tiny walls
on the street. To counteract this problem, we use a preprocessing step, which segments
colors similar to yellow. To deal with different light conditions, the color spectrum must
be wider so that a brownish or grayish yellow is also detected. This leads to some false
positives as shown in Fig. 27, but the disturbing lane markings are clearly classified as
unknown. The vehicle is now able to change lanes without further problems.

A problem with the vehicle’s own shadow only occurs when the sun is located behind

the vehicle, but in these situations the classification can deliver insufficient results. Fig. 28
shows the shadowy area in front of the car as unknown.

(a) original picture (b) drivability grid (c) original picture (d) normal drivabil-
(static Polygon) (static Polygon) (dynamic Polygon) ity grid (dynamic
Polygon)

Figure 29: The same frame first computed with a static search polygon (a, b), then with
the dynamic polygon (¢, d). The dynamic movement calculation caused the polygon to
move to the right (c).

The benefit of a search polygon that is transposed by the output of the last frame
is tested by swerving about so that the car moves very close to the edges of the street.
Fig. 29 shows the results when moving the car close to the left edge. As the static polygon
touches a small green area, a somewhat green mean value is gathered and so the resulting
grid shows a certain amount of drivability in the grassland, whereas the dynamic polygon
moves to the right of the picture to avoid touching the green pixels so that the resulting
grid does not show drivability on the grassland.

36

4.3 Artificial Intelligence
4.3.1 The DAMN-Architecture

To control Caroline’s movement, the artificial intelligence computes a speed and a turning
wheel angle for every discrete step. Turning the steering wheel results in different circle-
radii on which the car will move. Instead of the radii, the approach is based on the
inverse, a curvature.

A curvature of 0 represents driving straight ahead, while negative curvatures result in
left and positive curvatures in right turns as shown in Fig. 30.

startpoint

/

curvatures

Figure 30: Curvature field: Larger black circles represent preferred votes.

This curvature, as the most important factor to influence, is selected in an arbiter
as described in the DAMN-architecture |Ros97|. This architecture models each input
as behavior, which gives a vote for each possible curvature. More behaviors can be
added easily to the system, which makes it very modular and extendable. The following
behaviors are considered:

e Follow waypoints: Simply move the vehicle from point to point as found in the
RNDF.

e Stay in lane: Vote for a curvature that keeps Caroline within the detected lane
markings.

e Avoid obstacles: Vote for curvatures that keep the vehicle as far away from obstacles
as possible and forbid curvatures leading directly into them.

e Stay on roadway: Avoid curb-like obstacles detected by grid-based fusion with laser
scanners and color camera.

37

e Stay in zone: Keep the vehicle in the zone, defined by perimeter points in the
RNDF.

All collected votes are weighted to produce an overall vote. The weights again are
not fixed, they depend on factors including distance to an intersection, presence of lanes
and more. A trajectory point is calculated by following the best voted curvature for
one meter. A trajectory point holds information such as position, orientation and speed.
Starting at this trajectory point, all behaviors vote again for curvatures to find the next
point until a list of points is computed. This list has to be long enough to come to a
complete stop at current speed. The speed is controlled by another arbiter influenced
by different behaviors, which each provide a maximum speed. The arbiter simply selects
the lowest of these speeds. These behaviors are: RNDFMax, sensor health, zone, reverse,
safety zone, obstacle distance and following other obstacles. Based on the trajectory
points calculated iteratively we design a drivable corridor for further processing by the
next module in the chain, the path planner.

4.3.2 Interrupts

Because the AT has to deal with more complex situations, e.g. stopping at a stopline
and yielding the right-of-way, than the DAMN-architecture is designed for, we extended
DAMN by an interrupt system. At each trajectory point found each interrupt is called
upon to decide if it wants to be activated at its location. If so, the speed stored in the
trajectory points is reduced to bring the car to a smooth stop. If the point is reached,
the interrupt is activated and the arbiters are stopped until the interrupt returns control
to the arbiters. Some of our interrupts are:

e Intersection: Activated at a stopline until it is our turn.
e Queue: Wait in a line at an intersection.

e Overtake: Stop the car when the lane is blocked and wait for other lane to clear to
start passing maneuver.

e U-turn: Activated at a dead-end street - this interrupt actually performs the U-turn
and turns the car around.

e Road blocked: Activated if the entire road is blocked - this interrupt then activates
the U-turn interrupt when appropriate.

e Parking: Activated at a good alignment in front of the parkbox - this interrupt
returns control after the parking maneuver is finished.

e Pause: Active as long as the car is in pause mode.
e Mission complete: Final checkpoint is reached.

An example can be seen in Fig. 31, where the queueing interrupt has to be activated
at some point in the future and the speed must therefore be reduced.

38

Planned Trajectory Points Queue :E:gfjgtﬂon

N T l

<

Figure 31: Interrupt example.

4.3.3 Example

An example of how different behaviors interact is shown in Fig. 32. In the recorded
situation, Caroline just started overtaking another car, blocking its lane. The plots
represent the calculation of one trajectory: 20 trajectory points are calculated from the
front to the back. For each point votes for 40 curvatures are made, these are displayed
from left to right.

The lane behavior (a) demands a sharp left for the first four curvatures, then a right
turn which finally transitions to straight driving. This would bring Caroline quickly to
the free lane to pass the obstacle vehicle. The obstacle behavior (b) has two obstacles
effecting the votes: On the left, a wall forbids going farther to the left, on the right
one can see the car that is be passed. Finally the waypoint behavior (¢) wants to go to
the right all the time, because that is the lane where Caroline should be and where the
waypoints are, but is outvoted by the other behaviors in (d).

4.4 Vehicle Control

Lateral and longitudinal control are the basics of autonomous vehicle guidance. In the
following, both concepts as installed in Caroline for the DARPA Urban Challenge are
discussed in detail.

4.4.1 Longitudinal Control

While the maximum and minimum speed of the vehicle is chosen by the artificial intel-
ligence, the controller must calculate the braking and accelerator set points in order to
maintain a given speed.

For this purpose, the longitudinal controller is separated into an outer and an inner
loop controller. Based on the given speed set point, the outer loop controller determines
the required acceleration. Finally, the inner loop controller calculates throttle and brake
input to track the required acceleration. The acceleration of the vehicle, which is needed
for feedback of the lower controller, is provided in high resolution by the GPS/INS system.

Gear shifting is handled via an automatic gear box. However, to switch between for-
ward, backward and parking state, an automatic lever arm is attached at the gearshift.

39

Figure 32: Votes of a) stay in lane, b) avoid obstacles, ¢) follow waypoints, d) weighted
sum.

The lever arm position can be commanded with a CAN (Controller Area Network) inter-
face.

Longitudinal Dynamics The driving power must be greater than the sum of all driv-
ing resistances, that is the sum of rolling, air and acceleration resistance. Engine torque
My is a function of throttle a4, engine speed n,; and engine acceleration n,;.

(famg+ ey AL (2T R0,y

,
Mk T 2 g Uk

Mar(oun, ma, far) = CIELELIECEY

The meaning of the parameter is given in table 1.

The model is used for the inner loop controller to simulate different control strategies
for the longitudinal control. The plant model for the outer loop controller is the transfer
function between desired vehicle acceleration and actual vehicle speed. The inner loop is
approximated as a PT1 element. In addition, an integral element is needed to integrate
the speed from acceleration:

1
- s(Ts+1)
Introducing measured values of the drive chain into the model, leads to a value of
T = 0.6s for system lag.

P(s) (13)

40

Symbol | Parameter
Ry Wheel Radius, Unloaded
r Wheel Radius, Loaded
Mk Degree of Efficiency, Gear Box

o Gear Transmission Ratio
fr Rolling Friction Factor
m Mass

g Gravity

Cuw Air Resistance Factor

A Cross Sectional Area

p Air Density
A Moulding Bodies Factor

Table 1: Longitudinal model parameters.

P-PD-Control Controller Cascade As mentioned above, the longitudinal controller
is separated into an outer and inner control loop. The block diagram in Fig. 33 depicts
the control structure. K(s) stands for each transfer function of the different controller
parts. Different control parameters are used for acceleration and deceleration. While
a PD controller is applied for the inner loop, a P controller is introduced for the outer
control loop. Control outputs for acceleration and braking are combined via a predefined
logic to prevent the system from activating throttle and brake at the same time.

l' K(s * K(s

’ Upper Controller l i Lower Controller

Throttle aesired Throttle
Vdesired —»| Caroline |a > \4
—3| Dynamics
K(s) Qdesired K(S)

Upper Controller Lower Controller
T - Brake T - Brake

Figure 33: Block diagram of the longitudinal controller.

In addition, an engine map can be used for direct feed forward of the throttle. Fig. 34
shows a typical implementation of an engine map for longitudinal control.

Performance of the Longitudinal Controller Fig. 35 illustrates the performance
of the longitudinal control strategy. Two different examples are shown with two different
speed profiles. While in the first example, the desired speed is changed in long and large
steps, in the second example the speed is changed in shorter and smaller steps. The
desired as well as the actual speed of Caroline are illustrated.

41

Engine Map

wp ul enbio] suibug

o
o
o
e

Engine Speed in RPM

Throttle in percent

Figure 34: Engine map.

Example 2

Example 1

4
Time tin sec

e}
el
g 3
3 &
N5
g
B 3
<0
~ S © © < o
- -
S/w ul A peads
p
7
H)
el
B8
[O N
Q. »
N5
ERS)
5 3)
<0 N—
~ S © © < «
- -

S/w ul A peads

3
Time tin sec

2

Figure 35: Performance of the longitudinal controller.

42

4.4.2 Lateral Control

It is the main goal of the lateral controller to follow a given trajectory with a minimum of
track error. Secondly, vehicle driving maneuvers should match certain comfort parameters
for smooth driving experience.

Vehicle Dynamics For simulation of the vehicle as well as design of the controllers it
is necessary to describe motion behavior with a mathematical model. In the following
the bicycle model is used. The bicycle model is based on the following assumptions:

e The center of mass of the car is located at street level.

Two wheels of each axle are combined as one wheel in the center of the axles.

The longitudinal acceleration is zero.

e The wheel load of all wheels is constant.

Lateral forces at the wheel are proportional to skew angle.

F.,, =mv(f+y)

Figure 36: Bicycle model.

A state space representation within following structure is preferred:
x(t) = Ax(t) + Bu(t) + Ez(t), x(0) = %o (14)

Track error and track angle deviation have to be described mathematically to take them
into consideration. Track angle deviation is defined as the difference between desired and
actual orientation of the car. It is assumed that the derivation of the track angle (jegired
can be calculated as the product of the curvature x of the track and the current speed v:

Cdesi’red = K-V (15)

Yaw angle 1, with respect to the desired track is the difference between absolute yaw
angle ¢ and desired track angle Cgesireq:

7ﬂrel = w - Cdesired (16)
43

As a result, yaw rate 1&7«6[with respect to the desired track can be determined:

zbrel = ’lb — RV (17)

Moreover, the derivation of the track error d can be formulated based on speed v, attitude
angle § and relative yaw angle 9,¢:

d=v(84+ 1) (18)

The state space representation of the bicycle model can be combined with the math-
ematical representation of the track error, track angle deviation and an additional time
delay T}, between commanded and actual steering wheel angle. The state vector consists
of yaw rate ¥, attitude angle (3, relative yaw angle 1., track error d and actual steering
angle 9. The result is the following state space model with the commanded steering angel
Odesired @S the input variable and curvature x as outer noise:

¢ air a2 0 0 ags b 0 0
I az azx 0 0 ags B 0 0
wrel - 1 0 00 0 wrel + 0 '5desi’red+ —v R (19)
d 0 v w 0 0 d 0 0
1 i
5 0 0 00 —%) T 0
with
cav I3 + cam 12 Cav ly + Canl Cav l
an = — VVQUHH, a2 = — VVQ HH, ais = ‘év (20)
(e} l - Lo l o (e} o
G21=—1—va ;HH, G22=—M, a25:C—V (21)
muv mu muv
The parameters are described in table 2.
The output of the system is the track error d.
y&)=(0 0 0 1 0)" x(t) (22)

Based on the state space model, the transfer function can easily be determined. The
control transfer function is

) o5 5> ais a a1z — Qo5 a11) S + (ass ajo — ass a 1 w
Fu(s) = L G5 +(215 21 + Q15 95 a11) S + (ag5 a12 95 (12) 20 3
T, s+ 1 s2 — (a11 + ag)s + (a11 azs — aiz as) s 8
and the noise transfer function:
v
Fnoise - - - 24
s (24)

44

Symbol | Parameter
CaV Skew Stiffness, Front Wheel
CoH Skew Stiffness, Back Wheel
ly Wheel Base Front to Center of Mass
Iy Wheel Base Back to Center of Mass
0 Moment of Inertia
m Mass

Table 2: Parameters of the bicycle model.

Parallel Structure Control As modeled, the vehicle has three degrees of freedom,
which are the x and y position as well as the orientation v of the car. Only the steering
angle ¢ is available for controlling the system. As a result, the three degrees of freedom
are handled simultaneously. Track error and track angle deviation are used as feedback
signals. The working point is chosen at the speed of 30 km /h.

Fig. 37 shows the structure of the control strategy used. Again, K(s) stands for
each transfer function of the controller. It consists of two parallel control loops for track
error and track angle deviation as well as a pilot control taking the curvature of the
desired trajectory into consideration. The map-based pilot control algorithm calculates
the steering angle that would be needed to follow the desired track based on parameters
of the bicycle model.

K
—»{ Pilot Control
Desired o1 Position and
Trajectory _— Orientation
EE TN O S £
- Track Error
03
| S K(s)
Track Angle

Figure 37: Lateral control strategy.

Performance of the Lateral Controller Lateral control strategy has to handle dif-
ferent kinds of trajectories. On the one hand, the vehicle has to follow trajectories with
a curvature of approximately x ~ 0 at higher speeds. On the other hand, the track error
in twisting areas is supposed to be as small as possible. Fig. 38 shows an example of a
trajectory that consists of a long straight part and two sharp curves. On the straight
section, the vehicle is accelerated up to a speed of almost v = 50 km/h. The curves are
driven at a speed of approximately 20 km/h. The speed profile is shown in Fig. 39. The
performance of the control strategy in terms of track error can be seen in the same figure.

45

Trajectory
200 T

190~ i

180 i

170~ N

y—Position in m
N -
[4)] [}
o o
T T
L L

-
N
o
T
|

130 *
Starting Position
120 \ B
110 B
100 | | | | | | | | |
-300 -280 -260 -240 -220 -200 -180 -160 -140 -120 -100

x—Position in m

Figure 38: Trajectory.

The control strategy shown worked well during all tests and missions during the
DARPA Urban Challenge. It has always been stable with quite a low track error.

46

Speed in km/h

Speed Profile of the Track

10 15 20 25
Time in sec

Figure 39: Speed profile

30

and track error of the trajectory.

47

Track Error in m

0.5

0.4

0.3

0.2

-0.3

-0.4

-0.5

Track Error

10 15 20
Time in sec

25

30

4.5 Safety

The safety systems of Caroline have to ensure the highest possible safety for the car and
the environment in both manned or unmanned operation. It has to monitor the integrity
of all viable hardware and software components. In case of an error, it has to bring the
car to a safe stop. Furthermore, it must provide an interface for pausing or disabling the
car using a remote E-stop controller. We extended these basic features by including the
possibility to reset and restart seperate modules independently using hardware and/or
software means in order to gain the option of automated failure removal. Fig. 40 depicts
this watchdog concept.

i Gateway _
Actorics Control s vehicle seering
Car PC information
monitoring l J_
- A P ‘
Vehicle Controller (¢ > communication < ——— >
CAN controller powertral

monitoring actorics

Watchdog state

— brakin throttle ear
monitoring heartbeats 9 g
generating vehicle l l l

sending autonomous i state message

mode demands CAN actorics

communication controlling

interface emergency brake
horn / warning beacon

vehicle power

A
\ J

controlling horn,
flashing beacon

vehicle starter

Yyvy
YYVYY

emergency/parking brake

\T/ controlling vehicle
power, starter

darpa stop comnect
receiver %

disable

Figure 40: Watchdog architecture.

Caroline is equipped with two separate brake systems. The main hydraulic system
and an additional electrical parking brake. The main hydraulic brake is controlled by
pressure, usually generated with a foot pedal by the driver. In autonomous mode, this
pressure is generated by a small hydraulic brake booster. The parking brake is controlled
by a push button in the front console. This brake is a useful additional feature. If the
button is pressed while the car is rolling, the main brake system is activated in addition
to the parking brake until the car comes to a complete stop. During autonomous mode,
the watchdog gateway, the emergency buttons on the top of the car and the receiver for
the remote E-stop controller form a safety circuit, which holds a safety relay open. This
relay is connected to the push button for the parking brake. If one of the systems fails,
or is activated, the safety circuit is opened, the contact of the relay is closed and the
push button of the parking brake is activated. During emergency braking, the lateral
controller of the car is still able to hold the car on the given course.

Although the watchdog’s main purpose is to assure safety it also increases the sys-
tem’s overall reliability. Caroline is a complex system with custom or pre-production
hardware and software modules. These components were developed in a very short time

48

and therefore are not as reliable as off-the-shelf commercial products. For this reason
we used devices primarily implemented for all safety-relevant subsystems in order to also
provide the means to monitor and reset non-safety relevant subsystems.

Each host runs a local watchdog slave daemon, which monitors all local applications
as shown in Fig. 41. A process failing to send periodic heartbeats within a given interval
indicates a malfunction, such as memory leakage or deadlocks. Therefore the process and
all dependent processes are terminated by the local watchdog slave, to be restarted with
respect to the order required by process dependencies.

watchdog
pcl pcn... pe
slave daemon 1 slave daemon 2 slave daemon n

process 1 |, process 1 |, —|| wd master |
process 2 | process 2 | process 2 |

process n process n process n

kill
heartbeat

kill
heartbeat

kill
heartbeat

controller
3 Y
CAN
| heartbeat/reset/suspend v
TCP/IP
relaisbox actorics CAN gateway
for power shutdown

Figure 41: Software watchdog architecture.

The slave watchdog itself is monitored by a remote central master watchdog. This
approach allows the detection of malfunctions that cannot be resolved by the local slave
watchdog, e.g. if a computer freezes. If a computer should freeze, an emergency stop is
initiated and the failed system is power-cycled to restart in a stable state. The master
watchdog is monitored by the CAN gateway, which initiates an emergency stop on failure
of the master watchdog.

5 System Development Process

For developing Caroline’s software and ensuring its quality, we implemented a multi-
level testing process using elements of extreme programming [Bec05| partly realized in
an integrated tool chain shown in Fig. 42. The workflow for checking and releasing
software formally consists of five consecutive steps. First the source is compiled to check
for syntactical errors. While running the test code, the memory leak checker valgrind
[NS03] checks for existing and potential memory leaks in the source code. After the
execution of the test code, source code coverage is computed by simply counting the
executed statements. The intent is to implement test cases that completely cover the
existing source code or to find important parts of the source code that are still lacking

49

test cases. The last step is for optimization purposes only and executes the code in order
to find time-consuming parts inside an algorithm.

Sourcecode | Testcode |
F 3 r 9

‘ Compile Check |' !

| Test Execution } y Report
| Memory Leak Check |l *

Profiling

Test Coverage

Figure 42: Workflow for testing and releasing software.

The tool chain is executed manually by the developer or by using an integrated de-
velopment environment such as Eclipse. The tool chain itself can be customized by the
developer by selecting only necessary stages for the current run, i.e. skipping test suites
for earlier development versions of an algorithm. Nevertheless, the complete tool chain
is executed every time a new version of the source code is checked in the revision system
Subversion [CSFP04]|. Therefore, an independent bugbuster server periodically checks for
new revisions on the server. If a new version is found, it is checked out into a clean and
safe environment so that the complete tool chain can be run. The results are collected and
a report is automatically generated. The report is easily accessible through the project’s
web portal [Edg07] for every developer. For measuring the performance or consulting
the results of a previous revision, the history of older revisions is kept and accessible via
same the web portal.

The main development process described above mainly covers only unit tests [Lig02]
for some functions or parts of the complete software system. For the development of Car-
oline’s artificial intelligence, interactive feed back tests using riskless simulations are nec-
essary. Furthermore, the interactive simulations describe different situations for testing
the artificial intelligence. After completing the interactive tests, they can be formalized
in acceptance tests for automatic execution on another independent server. These test
suites are automatically executed after every change to the revision system comparable
to the bugbuster server.

The next section describes the simulator development for the CarOLO project. Af-
terwards, the adoption of the simulator in automatic acceptance tests is explained. This
work continues prior work presented in [BBHR07| and [BBRO7].

5.1 Simulator

Ensuring quality of such a complex system with sensors that have to validate their mea-
surements by complex software, an artificial intelligence making complex decisions based
on uncertain information and a complex mechanical and electrical system carrying these

20

software components require a holistic approach to quality assurance. Beginning with
standard software engineering practices, such as rigorous forms of coding guidelines and
integrated development of software for all groups, we were of course determined to test
as much as possible to gain as much confidence on the system as possible. Of course
18 months did not give us enough time to achieve the necessary depth of testing to be
anywhere nearby acceptance on streets. However, both running continuous tests based
on a precise test process with the real car even on weekends and a rigorous approach on
simulation allowed us to gain enough quality to run Caroline in all even situations up to
the final.

A good and efficient to use simulation for various and partly complex traffic situations
is the key for developing a high quality artificial intelligence that is able to handle many
different situations with different types of preconditions. With the simulator, we were
able to test driving scenarios that we would never have been able to test in reality. A
standard test in reality involves four cars, and thus four drivers, on a specific street and
obstacle constellation. Even if the streets must not be built specifically, a test usually
takes ten minutes, leading easily to hundreds of hours of testing power. While we of
course ran these many tests in reality, we ran a lot more simulated test, because this
gives the developers much faster and quicker feedback on the developed software.

The simulator essentially closes the control loop by replacing the real car and provid-
ing appropriate feedback to the sensor parts of the system by interpreting the steering
commands and changing the Ego State and the surroundings.

Thus the simulator can be used for interactive testing of newly developed functions of
the artificial intelligence without the need for real vehicle. A developer can simply, safely
and quickly test the functions. Therefore, our approach was to provide a simulator that
can reliably simulate all missing parts of the software system. Moreover, the simulator is
a vital part of the automatic test infrastructure described in the next section.

Simulator i
Application R
/ Simulator Factory }\
1) 1 1} 1
| Simulator | View Object Components
Factory Factory Factory
1

| Moliel |

Figure 43: Main classes of the simulator.

Fig. 43 shows the main classes of the core simulator. The main idea behind this
concept is the use of sets of coordinates in a real world model as context and input. These
coordinates are stored in the model and used by the simulator. Every coordinate in the
model is represented by a simulator object position describing the absolute position and
orientation in the world. Every position is linked to a simulator object that represents one
single object. These objects can have a variety of behaviors, shapes and other information
necessary for the simulation. The model is linked with a simulator control that supervises

ol

the complete simulation. The simulator application itself controls the instantiation of
every simulator component by using object factories.

/ Simulator Factory }\
1 Iy 1

View Object Components
Factory Factory Factory
creates ;' crcatcg;," creales ,*'

n i"

Components Group |

n

Figure 44: Object factories creating the simulator’s surroundings.

Fig. 44 shows the factories in detail. The simulator view encapsulates a read-only
view of an extract of the world model. Every simulator view is linked with a simulator
components group. A component represents missing parts of the whole system like an
actorics module for steering and braking or a sensor data fusion module for combining
measured values and distributing the fused results. Thus, every component in the compo-
nents group can access the currently visible data of the core data model by accessing the
simulator view. As mentioned above, every simulator object position is linked with a sim-
ulator object, each of them equipped with its own configuration. Thus, every component
can retrieve the relevant data of the owned simulator object.

| Dynamic Object | | static Object |
AN

Car . Motion Behaviour |

Figure 45: World’s model and motion behavior interface.

The main task of the simulator is to modify the world model over time. For simulating
the world it is necessary to proceed a series of steps in the simulation. A simulation step
is a function call to the world model with the elapsed time step dt; > 0 as a parameter
that modifies the world model and its dependents either sequentially or in parallel.

A simple variant is to modify all simulator objects in sequence. In this variant, the list
of simulator objects is addressed through an iterator and then modified using the original
object data. Although this is an efficient approach, it is obviously not appropriate when

02

the objects are connected and rely on behaviors from other objects. Therefore, we take
the more complicated approach to run the algorithms on an emulated copy of the set of
simulator object positions that keeps their original values, while the new ones are already
defined. While reading the original data, the modification uses the copy and thus allows
a transaction such as a stepwise update of the system, where related objects update their
behavior together.

For modifying an object in the world model, every non-static object in the world
model uses an object that implements the interface MotionBehavior as shown in figure
45. A motion behavior routine executes a simulation step for an individual object. A
simulator component implementing a concrete motion behavior registers itself with the
simulator object. For every simulation step the simulator object must call its motion
behavior and therefore enable the behavior implementation to modify its own position
and orientation according to a simulator component. The decoupling of objects and their
motion behavior allows us to change the motion behavior during a running simulation.
Furthermore, it simplifies the implementation of new motion behaviors at development
time. For the tests for Caroline, we have developed quite a number of motion behaviors
like MotionBehaviorByKeyboard for controlling a virtual car in an interactive mode by
using keys or a MotionBehaviorByRNDF that controls a car in its surroundings by using
a predefined route to follow.

One of the most interesting motion behaviors however is the MotionBehaviorByTra-
jectory because it communicates directly with the artificial intelligence. For an optimal
imitation of the behavior of the real car, the simulator uses the same code as the vehicle
control module based on trajectories expressed as a string of pearls that form consecutive
gates. Furthermore, the motion of each simulated car is computed with 3rd order B-
splines exactly the same way as in the vehicle controller module. Using a B-spline yields
smoother motion in the simulation and a driving behavior sufficiently close to reality - if
it is taken into account that for intelligent driving functions it is not necessary to handle
the physical behavior in every detail, but in an abstraction useful for an overall correct
behavior.

Having a set of motion behaviors available, we can compose our motion behaviors
to create new more complex motion behaviors. For example, it is possible to build a
truck with trailer from two related, but only loosely coupled objects. A composition
of the motion behaviors yields a new motion behavior that modifies the position and
orientation of the related simulator objects according to inner rules as well as general
physical rules.

Developing such a simulator and running it enforces quite a number of architectural
constraints for the software design of the running components. One important issue is
that no component of the system being tested tries to call any system function directly,
like threading or communication, but only through an adapter. Depending on whether it
is a test or an actual running mode, the adapter decides if the function call is forwarded
to the real system or substituted by a result generated by the simulator. Because of
the architectural style, it is absolutely necessary that no component retrieves the current
time by calling a system function directly. Time is fully controlled by the simulator and
therefore knows which time is relevant for a specific software component if different times
are used. Otherwise, time-based algorithms will become confused if different time sources

23

are mixed up.

5.2 Quality Assurance

As mentioned at the beginning of this section, the simulator is not only used for inter-
active development of the artificial intelligence. It is also part of a tool chain that is
automatically executed on an independent server for assuring the quality of the complete
software system consisting of several modules. In the CarOLO project, we analyzed the
DARPA Urban Challenge documents to understand the requirements. These documents
contained partly functional and non-functional definitions for the necessary vehicle capa-
bilities. In every iteration a set of tasks consisting of new requirements and bugs from
previous iterations is chosen by the development team, prioritized and concretely defined
using the Scrum process for agile software engineering [BS02|. These requirements are
the basis for both a virtual test drive and a real test of Caroline.

After designing a virtual test drive the availability of necessary validators is checked.
A validator is part of the acceptance tool chain and responsible for checking the compli-
ance of the artificial intelligence’s output with the formal restrictions and requirements.
Validators implementing intelligent software functions are used to automatically deter-
mine differences in the expected values in the form of a constraint that cannot be violated
by the test. A validator implements a specific interface that is called up automatically
after a simulator step and right before the control flow returns to the rest of the system.
A validator checks, for example, distances to other simulator objects, validates whether
a car has left its lane or exceeded predefined speed limits. After an unattended virtual
test drive, a boolean method is called upon to summarize the results of all test cases.
The results are collected and formatted in an email and web page for the project’s web
portal.

Figure 46: Screenshot of the GUI tool for constructing RNDFs.

o4

The set of validators covers all basic requirements and restrictions and can be used
for automatically checking the functinality of new software revisions. The main benefit
is that these high level tests are black-box tests and do not rely on the internal structure
of the code. Thus, a subgroup of the CarOLO team was able to develop these high level
acceptance tests without a deep understanding of the internal structures of the artificial
intelligence. Using this approach, more complex traffic situations could be modeled and
repeatedly tested without great effort.

To allow for the quick and convenient creation of test scenarios, various concepts and
tools have been developed. The following describes how virtual test drives are defined as
well as how certain surroundings such as data fusion objects or drivability data is gener-
ated and fed into the simulator. To make this clear we briefly illustrate the proceedings on
a basis of an example, which deals with the simple passing maneuver as already described
in section 4.3.3. Assume we would like to determine wether the artificial intelligence is
able to recognize static obstacles in our travel lane and reacts properly by adhering the
required minimum distances.

First, an RNDF must be created that contains information about existing lanes,
intersections, parking spots and their connections. As an RNDF provides the basis for
every test run, many of those route network definitions had to be created. Therefore we
developed a GUI tool to simplify the creation of RNDFs as shown in Fig. 46.

Several features including dragging waypoints, connecting lanes and adding stop signs
or checkpoints speed up the construction process. Completed RNDFs could be exported
to a text file and used as input for the artificial intelligence as well as for the simulator.

Figure 47: Screenshot with fusion objects.

The purposes of RNDFs within the simulator vary in different ways. One purpose is
to check the behavior of the artificial intelligence concerning the RNDF provided and the
actual lane. Therefore a second RNDF can be passed to the simulator. The additional
and independent RNDF is used to provide lane data, which is normally detected by
the computer vision system. This is especially important if there are major differences

%)

between the linear distance and the actual route to the next waypoint.

Another use of RNDFs is to define the behavior of dynamic obstacles during the test
run, as mentioned earlier. Thus we are able to check relevant software modules for their
interaction with dynamic obstacles. This approach is similar to the one used for providing
detected lanes. Dynamic obstacles are interacting on a basis of their individual RNDFs
by using the MotionBehaviorByRNDF. This concept can be used for simulating scenarios
at intersections and even more complex traffic scenarios.

Figure 48: Sreenshot with additional drivability data.

To extend the example of passing a static obstacle we need to create suitable data,
which could be translated to sensor fusion objects. Two principal approaches are available
to achieve this goal. Generating scenarios with static obstacles can be accomplished by
using our visualisation application, which provides the ability to define polygons or by
using a drawing tool. Shapes of fusion objects could be exported to a comma-separated
file. The simulator parses the textual representation of polygons and translates them to
fusion objects to be processed by the artificial intelligence. The use of a drawing tool
implies the use of predefined colors. The positions of static obstacles are computed by
scanning the created image for special markers with reference to a known coordinate.
Fig. 47 depicts a screenshot of our visualisation application where the corresponding
fusion objects are displayed.

For a more realistic simulation, the data fusion objects generated by the simulator
could be created with different quality. This is used to simulate sensor noise and GPS
drifts and makes fusion objects suddenly disappear or moves them by a tiny offset away
from their original location. The sensor visibility range could be specified to affect the
range of fusion objects that will be transmitted to the artificial intelligence.

Adding moderate drivability data completes this test run. This could be accomplished
by passing an image file to the simulator, which specifies the required information through
different colors. Fig. 48 shows the result. The visualisation of drivability grid displays
drivable terrain in green, undrivable terrain in red and unknown terrain with blue cells.

26

6 The Race

6.1 National Qualification Event

The National Qualification Event took place from October 26 to October 31 on the
former George Airforce Base in Victorville, California as depicted in Fig. 2. The entire
area was divided into three major parts named "Area A”, "Area B” and "Area C” as shown
in Fig. 49. First of all, Caroline had to demonstrate the proper function of her safety
system to participate in the National Qualification Event. As expected Caroline stopped
within the necessary range using the E-stop remote controller as well as the emergency
stop buttons mounted on her roof.

Figure 49: Layout of the former George Airforce Base for the National Qualification
Event. The blue dot indicates the pit area for our team.

6.1.1 Area A

For our team, the National Qualification Event started in "Area A”. The main task for
Caroline in that part was to merge into and through moving traffic. Therefore, several
other vehicles controlled by human drivers drove within predefined speed limits to ensure
the 10 seconds time slots as demanded by the DARPA’s requirements. Fig. 50 shows the
layout of the track. Caroline was placed at checkpoint 2. She had to drive downward to
the T-junction, wait for an appropriate time slot and then turn left through the moving
traffic. Afterwards, she had to pass checkpoint 1 by following other vehicles and drive to
the upper junction. After waiting for an appropriate time slot, she had to turn into the
street to pass checkpoint 2 again. The goal was to drive as many rounds as possible in
this area.

o7

Figure 50: Layout of "Area A”.

Compared to other competitors, Caroline had to pass this task several times. The first
run in this part let Caroline drive into the opposite lane. Analyzing this obviously strange
behavior afterwards using our simulator as depicted in Fig. 51, we figured out that the
barriers shown by white lines around the course narrowed the proper lane. Therefore,
Caroline, shown as a red rectangle driving downwards to the lower T-junction, interpreted
them as stationary obstacles in her way which she tried to overtake which can be seen in
the computed trajectory shown by yellow and black pearls that leads into the opposite
lane.

Figure 51: Analysis of Caroline’s behavior in "Area A”.

After modifying several parameters, we had our second try in "Area A”. She drove
five rounds, merged into moving traffic correctly, waited at stop lines and followed other
vehicles very well. Unfortunately, some problems occurred on the above right corner,

28

when Caroline decided to turn right instead of following the road to the junction. We
found out, that Caroline got in trouble with the street surface in that corner. There was
a mixture of concrete and tar each with different colors. Thus, Caroline educated that
color difference and tried to drive towards areas with a similar surface.

After modifying that behavior, we got another try in that course. Caroline started
a perfect first run but waited too long for the second one. Therefore, the judges paused
our vehicle and demanded a more progressive behavior of Caroline. Tuning again some
parameters, we tried the course a fourth time short time later. This time, Caroline
drove very swiftly but she did not give way to oncoming traffic. So, we changed the
parameters again to get a safer behavior again and convinced the judges in our last try in
that area of Caroline’s abilities to merge correctly into moving traffic after demonstrating
approximately eigth perfect rounds.

6.1.2 Area B

After encountering difficulties in the first task, we were unsure how Caroline would per-
form in "Area B” since several teams already failed to complete this part. The entire
course is shown in Fig. 52. The main task was to overtake stationary obstacles, handle
free navigation zones without any lane markings and to park safely inside those zones
between other vehicles. The course itself could not be seen completely, so Caroline had to
drive for herself without any observation by our team. We only could hear her progress
by the team radio and by her siren.

Figure 52: Layout of "Area B”.

29

Caroline started within a concrete start chute laid inside a free navigation zone. Many
other teams already failed to leave this zone into the traffic circle correctly. She entered
smoothly the traffic circle, left the circle and turned into the part on the right hand side
of Fig. 52. In the center of the lower circle she had to park between other vehicles. The
entry to that zone was very rough and several other teams already damaged the tires of
their vehicle. We analyzed the video right after the task and remarked heavy vibration
of the camera’s picture but she entered the zone smoothly. After finishing the parking
she left the zone to proceed the course.

Furthermore, Caroline had to deal with a gate located right at the exit of the upper
circle. Due to our sensor layout she had to attempt several times to find the right way
for leaving that circle. Returning to the start chutes again, she honked twice to indicate
the completion of her mission after passing the last checkpoint. With this successful run,
Caroline was one of only three vehicles to accomplish this course completely and in time.

6.1.3 Area C

On the same day, Caroline was faced with "Area C”. This area is shown in Fig. 53. The
main task was to handle intersections correctly and deal with blocked roads.

Figure 53: Layout of "Area C”.

Caroline started near checkpoint 30 in the upper left corner on the outer lane. She
handled both intersections on the left hand side and the right hand side several times
correctly with every combination of other vehicles she was faced. Right in front of check-
point 30 in the center part of this course, Caroline encountered a road blockage as shown
in Fig. 54. We were unsure wether Caroline would detect the barrier since it had no
contact to the ground and our sensors could look right through that barrier.

60

Figure 54: Blocked round in "Area C” by a barrier.

But Caroline detected that barrier properly and initiated the U-turn to choose another
route the checkpoint. Afterwards, she passed all further traffic and intersection situations
correctly and finished "Area C” finally. With all results achieved in the three areas,
Caroline qualified early as a newcomer for the final event besides the well-established
team with their experience of the Grand Challenges.

6.2 Mandatory Practice for DARPA Urban Challenge Final Event

The day before the DARPA Urban Challenge Final Event was scheduled, everyone of the
evelen finalists had to participate in a practice session. By using this session, DARPA
would ensure that every vehicle was able to leave the start chute and turn into the traffic
circle. Assuming that this would be an easy task, we put Caroline into autonomous mode
and waited for her to begin her run. But she did not leave her start chute and our team
failed that practice session. We figured out a problem by parsing the RNDF provided by
the DARPA. This issue did not let Caroline understand the road network for the final.
After fixing this problem, we got another try. But Caroline still did not leave her start
chute. Thus, DARPA placed us in the last of the eleven start chutes and cancelled the
practice for our team.

Later analyzing the data we figured out the jitter in the GPS signal while significantly
waiting for the "RUN” mode that yielded leaving the calculated trajectory. After fixing
this issue we finally prepared Caroline for the DARPA Urban Callenge Final Event on
the following day.

61

6.3 DARPA Urban Challenge Final Event

Fig. 55 shows the enlarged "Area B” track for the DARPA Urban Challenge Final Event,
including the former "Area A” as a parking lot. The start chutes were the same as for
the run in ”Area B”. Additionally, in the lower-right corner of the map, there was a sandy
off-road track located yielding a two-lane road return the inner part of the DARPA Urban
Challenge Final Event area.

3
L
r

A

g

=

¥

Figure 55: Layout for the DARPA Urban Challenge Final Event.

On November 3, 2007 at 6:53 am PST we loaded the first of three mission files into
Caroline and set her into "PAUSE” mode. She calculated the route for the first checkpoint
and started her run at 7:27 am PST. Fig. 56 shows the first part of her way during the
first mission.

The asterisk in Fig. 56 indicates the location where two members of our team had to
accompany the DARPA judges. Caroline had passed approximately 2.5 kilometers until
she was paused by the DARPA control vehicle right behind her. Fig. 57 shows the reason
for "PAUSE” mode.

Caroline got stuck after she turned into the berms. Fig. 57 (a) and (b) shows Caroline
approaching a traffic jam right in front of her. Obviously, she tried to pass the stopped
vehicle by interpreting it as a stationary obstacle using the clearance next the last car.
The result of this attempt is shown in Fig. 57 (¢): Caroline got stuck and could not get
free without human intervention.

After she got freed and set in "TRUN” mode again right at the beginning of the two-
lane road, she continued her route and passed several checkpoints. The next incident was
after 11.4 kilometers shown as the asterisk in Fig. 59.

At that location Caroline did not yield right of way to Talos, the autonomous vehicle
from team MIT. Therefore, the DARPA paused both vehicles and let team members from
MIT come to that location. After replacing Talos, both vehicles were sequentially set to
"RUN” mode and passed safely each other. Unfortunately, the reason for not yielding

62

e TS

T iy oty l-)"_
5

(a) Blocked road in front of (b) Caroline is approaching (¢) Caroline got stuck after
Caroline. the traffic jam. turning left into the berms.

Figure 57: Caroline got stuck after 2.5 kilometers.

right of way to Talos could not be figured out analyzing our log files. Since the situation
was a left turn through oncoming traffic, it could be a problem detecting and tracking
Talos due to problems either with our front sensors or with the interpretation in the
artificial intelligence.

As shown in Fig. 60, Caroline continued her route. Additionally, she parked in the
parking lot shown in the upper left picture of Fig. 60. After the parking maneuver, she
returned the second time to the traffic circle and continued her mission 1.

At approximately 9:55 am PST, again two team members from team CarOLO were
driven to Caroline, who met Talos from team MIT for the second time in a free navigation
zone. This incident is shown as an asterisk in Fig. 61.

Our team members were faced with a twisted carrier rod of the Ibeo laser scanners
due to a collision with Talos from team MIT as shown in Fig. 62. Until today it is
still unresolved which car was in charge of the accident. Caroline interpreted the situ-
ation as described in the technical evaluation criteria [DARO6| by the section “Obstacle

63

Figure 58: Caroline went on after she got stuck.

field”. Therefore, Caroline tried to pass the oncoming Talos by pulling to the right side.
Unfortunately, further interpretation is impossible due to missing detailed log files of
that situation. Finally, DARPA retired Caroline as the fourth and last vehicle from the
DARPA Urban Challenge Final Event.

Altogether, Caroline drove 16.4 kilometers in total and was retired from the race
at 10:05 am PST. At 8:03 am PST, the watchdog module reset the Sick laser scanners
mounted on the roof due to communication problems. At approximately 9:00 am PST,
the watchdog missed heartbeats from the IMU, and therefore triggered a reset. Right
after the collision with Talos from team MIT, the watchdog observed communication
problems with the laser scanners mounted in the front of Caroline. After a reset, the
communication was re-established. During the race, computer "Daql” as shown in Fig. 6
freezed two times and had to be reset.

64

Figure 60: Caroline went on after not yielding right of way to Talos.

7 Conclusion

Team CarOLQO is an interdisciplinary team made up of members from the faculties of com-
puter science and mechanical and electric engineering which is significantly supported by
industrial sponsors. Our vehicle Caroline is a standard 2006 Volkswagen Passat sta-
tion wagon built to European specifications that is able to detect and track stationary
and dynamic obstacles at a distance of up to 200 meters. The system’s architecture

65

(a) Collision between Caroline and Talos (b) The red circle shows the twisted carrier
from MIT. rod.

Figure 62: Caroline was retired after the collision with MIT.

comprises eight main modules: Sensor Data Acquisition, Sensor Data Fusion, Image
Processing, Digital Map, Artificial Intelligence, Vehicle Path Planning and Low Level
Control, Supervisory Watchdog and Online-Diagnosis, Telemetry and Data Storage for
Offline Analysis. The signal flow through these modules is generally linear in order to
decouple the development process. Our design approach uses multi-sensor fusion of lidar,
radar and laser scanners, extending the classical point shape based approach to handle
extensive dynamic targets expected in urban environments. Image processing detects
lane markings along with drivable areas. Artificial intelligence is modeled according to
DAMN architecture, redesigned and enhanced to meet requirements of special behavior
in urban environments. Our approach is able to handle complex situations and ensure

66

Caroline’s proper behavior, e.g. obeying traffic regulations at intersections or performing
U-turns when roads are blocked. Decisions of the artificial intelligence are sent to the
path planner, which calculates optimal vehicle trajectories with respect to its dynamics
in real time. Safety and robustness is ensured by a supervisory watchdog monitoring all
vehicle’s hardware and software modules. Failures or malfunctions immediately result in
a safe and complete stop by Caroline. Since we are a large heterogeneous team with a
very tight project schedule, we enforced very early the need for efficient quality assur-
ance during the development process. Thus, we implemented an automatic multi-level
test process. Each new feature or modification runs through a series of unit tests or
comprehensive simulations before being deployed on the vehicle.

As a competitor in the DARPA Urban Challenge Final Event, Caroline is able to
autonomously perform missions in urban environments. She drove approximately three
hours in the final and achieved an excellent seventh place.

- ess O | |
Qros /V| B dowuws B

"n = 5 BRAUNSCHWEIGISCHE LANDESSPARKASSE

I:]. csb BRAUNSCHWEIGER
ZEITUNG

Niedersachsen

Partner fiir Wissenschaft und Technik I ‘
Braunschweigischer Hochschulbund

ZnBp LINEAS]MAR (Chofer

P Informationstechnik www.hofer.de
.‘& Niedersachsisches Ministerium ®
fiir Wissenschaft und Kultur b E 0 ’ O M L P

r‘ SALZGI'I_I'EFIAG
u Te ogie
Stahl 1d ch —

[

Ploing.
Eckard Wohlgehagen

City of Science 2007

Figure 63: We are deeply grateful for the support of our sponsors!

. sponsored by
N smartmicrao Prof. J.-U. Varchmin

The project had an ambitious goal and a tight schedule. As a newcomer to the
DARPA series of challenges, we are very proud that we have been able to fully achieve
our goals and even achieve more. The most important goals that we achieved were:

e Develop an autonomously driving car.
67

e (ain understanding in how to recognize the context of a car, namely street, position
of the car, position, direction and speed of other cars, obstacles etc.

e Gain an understanding of situation-based intelligent functions commonly called
“artificial Intelligence”.

e Develop high-level controlling functions for car controls.

e Setup an interdisciplinary development process that fits both: high pressure through
tight deadlines and high quality needs.

e Assist the development process by a rigid, continuously running test process that
always ensures an integrated development product and all quality tests passing
correctly.

e Gaining an understanding of how software and physical system can be modeled
together in a simulation to gain an easy understanding of how the full system (in
our case Caroline) will behave in its context (the city).

Finally, we are proud that with this project, we have proven that computer scientists,
electrical and mechanical engineers can successfully and interdisciplinary work together,
even though all three engineering disciplines have developed their own forms of develop-
ment knowledge. Over the years they started to develop significant differences in their
forms of methods, tools, processes and even their glossaries. The new kinds of products
we will see in the future however enforce interdisciplinary collaboration. The CarOLO
project acts as a right step towards this kind of close collaboration.

References

[BBHRO7| C. Basarke, C. Berger, K. Homeier, and B. Rumpe. Design and quality
assurance of intelligent vehicle functions in the “virtual vehicle”. In Virtual
Vehicle Creation 2007, 2007.

[BBRO7] C. Basarke, C. Berger, and B. Rumpe. Software & systems engineering process
and tools for the development of autonomous driving intelligence. Journal of
Aerospace Computing, Information, and Communication, 4, October 2007.

[Bec05] Kent Beck. Eztreme Programming Fzxplained: Embrace Change. Addison
Wesley, 2005.

[Bil97] Jeff Bilmes. A gentle tutorial on the em algorithm and its application to
parameter estimation for gaussian mixture and hidden markov models. Tech-
nical report, 1997.

[BS02] M. Beedle and K. Schwaber. Agile Software Development with Scrum. Pren-
tice Hall, 2002.

[CLRS02| Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliffort
Stein. Introduction to Algorithms 2nd Fdition. 2002.

68

|CSFP04]
[DARO6]
[DHT3]
[Edg07]

[GBO3]

[HS96]

[Kal60]

[Lig02]

[NSO03]

[Ope07]

[PM67]

|Ros97]

[Sha76|

[Sha90|

[TMD*06]

Ben Collins-Sussmann, Brian W. Fitzpatrick, and C. Michael Pilato. Version
Control with Subversion. O’Reilly, 2004.

DARPA. Technical evaluation criteria, 3 2006.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Anal-
ysis. John Wiley
& Sons Inc., 1973.

Edgewall Software. Trac. Edgewall Software, 2007.

Vadim Pisarevsky Gary Bradski, Adrian Kaehler. Learning-based computer
vision with intels open source computer vision library. pages 126-139, 2005.

J. Heikkil and O. Silvn. Calibration procedure for short focal length off-the-
shelf ced cameras. In 13th International Conference on Pattern Recognition,
pages 166—170, Vienna, Austria, 1996.

Rudolf E. Kalman. A new approach to linear filtering and prediction problems.
In Transactions of the ASME-Journal of Basic Engineering, pages 3545,
1960.

Peter Liggesmeyer. Software-Qualitaet : Testen, Analysieren und Verifizieren
von Software. Spektrum, Akad. Verl., 2002.

Nicholas Nethercote and Julian Seward. Valgrind: A program supervising
framework. Theoretical Computer Science, 89, 2003.

OpenCV Website. The open cv library, 2007.

Pitteway and M.L.V. Algorithmn for drawing ellipses or hyperbolae with a
digital plotter. In Computer Journal, volume 10(3), pages 282-289, November
1967.

Julio Rosenblatt. DAMN: A Distributed Architecture for Mobile Navigation.
PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
January 1997.

G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976.

G. Shafer. Perspectives on the theory and practice of belief functions. Inter-
national Journal of Approximate Reasoning, (3):1-40, 1990.

S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci,
V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen,
C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Brad-
ski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney. Winning
the darpa grand challenge. Journal of Field Robotics, 2006.

69

[UNOO] Iwan Ulrich and Illah Nourbakhsh. Appearance-based obstacle detection with
monocular color vision. In Proceedings of the AAAI National Conference on
Artificial Intelligence, Austin, TX, pages 866-871, 2000.

70

2005-03

2005-04
2005-05
2005-06

2005-07

2005-08
2006-01

2006-02

2006-03

2006-04

2007-01

2007-02

2007-03
2007-04

2008-01

2008-02

2008-03

2008-04

2008-05

2008-06

2008-07

Technische Universitat Braunschweig
Informatik-Berichte ab Nr. 2005-03

T.-P. Fries, H. G. Matthies

H. Krahn, B. Rumpe
O. Kayser-Herold, H. G. Matthies
T. Miicke, U. Goltz

T. Miicke, M. Huhn

B. Florentz, M. Huhn

T. Klein, B. Rumpe, B. Schétz
(Herausgeber)

T. Miicke, B. Florentz, C. Diefer

B. Gajanovic, B. Rumpe

H. Gronniger, H. Krahn,
B. Rumpe, M. Schindler, S. Vélkel

M. Conrad, H. Giese, B. Rumpe,
B. Schitz (Hrsg.)

J. Rang

B. Biigling, M. Krosche
C. Knieke, M. Huhn

T. Klein, B. Rumpe (Hrsg.)

H. Giese, M. Huhn, U. Nickel,
B. Schétz (Hrsg.)

R. van Glabbeek, U. Goltz,
J.-W. Schicke

M. V. Cengarle, H. Gronniger
B. Rumpe

M. V. Cengarle, H. Gronniger
B. Rumpe

M. Broy, M. V. Cengarle,
H. Gronniger B. Rumpe

C. Basarke, C. Berger, K. Berger,
K. Cornelsen, M. Doering J.
Effertz, T. Form, T. Giilke, F.
Graefe, P. Hecker, K. Homeier F.
Klose, C. Lipski, M. Magnor, J.
Morgenroth, T. Nothdurft, S. Ohl,
F. Rauskolb, B. Rumpe, W.
Schumacher, J. Wille, L. Wolf

A Stabilized and Coupled Meshfree/Meshbased Method
for the Incompressible Navier-Stokes Equations — Part
IT: Coupling

Evolution von Software-Architekturen

Least-Squares FEM, Literature Review

Single Run Coverage Criteria subsume EX-Weak
Mutation Coverage

Minimizing Test Execution Time During Test
Generation

A Metamodel for Architecture Evaluation

Tagungsband des Dagstuhl-Workshop MBEES 2006:
Modellbasierte Entwicklung eingebetteter Systeme

Generating Interpreters from Elementary Syntax and
Semantics Descriptions

Isabelle/HOL-Umsetzung strombasierter Definitionen
zur Verifikation von verteilten, asynchron
kommunizierenden Systemen

Handbuch zu MontiCore 1.0 - Ein Framework zur
Erstellung und Verarbeitung doméanenspezifischer
Sprachen

Tagungsband Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteter Systeme II1

Design of DIRK schemes for solving the
Navier-Stokes-equations

Coupling the CTL and MATLAB

Executable Requirements Specification: An Extension
for UML 2 Activity Diagrams

Workshop Modellbasierte Entwicklung von
eingebetteten Fahrzeugfunktionen, Tagungsband

Tagungsband des Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteter Systeme IV

Symmetric and Asymmetric Asynchronous Interaction
System Model Semantics of Statecharts

System Model Semantics of Class Diagrams

Modular Description of a Comprehensive Semantics

Model for the UML (Version 2.0)

2007 DARPA Urban Challenge Team CarOLO -
Technical Paper

