
Text-based Modeling

Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler and
Steven Völkel

Institute for Software Systems Engineering
Technische Universität Braunschweig, Braunschweig, Germany

http://www.sse-tubs.de

Abstract. As modeling becomes a crucial activity in software develop-
ment the question may be asked whether currently used graphical repre-
sentations are the best option to model systems efficiently. This position
paper discusses the advantages of text-based modeling over commonly
used graphical representations. It is inspired through the advent of new
extensible development tools like Eclipse. The discussion is illustrated
by showing a textual version of UML state machines as Eclipse plugins.

1 Text-based Modeling

Modeling becomes an increasingly important technique for the development of
complex software systems. Nowadays, three different approaches are used for
modeling: textual languages, graphical languages and combinations of text and
graphic. The latter usually being dominated by graphics, where text is just
a supplement. Currently, the UML is the most common visual approach for
modeling, as it is both widely known and assisted by many tools developed in
the last decade.

Most of them do not allow to conveniently look at the textual parts. E.g. if
only one method body is visible at a time in a pop-up window, then efficient com-
parison etc. is not possible. Therefore practical work with these tools often leads
to manipulation of generated code and hence enforces a round-trip-approach. Ex-
perienced developers argue that a text-based approach with conventional editors
is much more convenient.

To assist an efficient agile, yet model-based development process, we have de-
veloped a framework called MontiCore [12] in the last two years, which supports
text-based modeling. In contrast to generic approaches like [15] an arbitrary con-
crete syntax can be used for a modeling language which increases its usability.
MontiCore offers several textual languages for different purposes like a textual
version of UML/P [19, 20] including OCL, languages for feature modeling, and
a language for architectural description. This paper discusses the advantages of
text-based modeling based on the experiences we made so far. These experiences
indicate that there are indeed some advantages over the currently dominating
graphical-based approach. These advantages are partially permanent and par-
tially will disappear, when the tooling (editors, visualization, incremental code
generation, context checks on models) will be considerably improved. However,



based on the progress tool vendors made in recent years, it will probably take
at least another decade, until we will actually see such tools that are visual,
efficient and convenient.

In Section 2 we explain advantages of text-based modeling for the language
user. As existing tool support enhances the users productivity we list arguments
in Section 3 how tools can be created easily for textual languages. Section 4
compares our position with others and lists examples for textual modeling lan-
guages. In Section 5 a textual modeling language is defined and supporting tool
development is sketched as an example how such a language may be developed
and used. Section 6 concludes the paper.

2 Advantages for the Language User

The advantages we identified so far, differ concerning the roles that participate
in a development process [11]. From the developers viewpoint, the advantages
are:

Information content. Graphical models usually need more space than text-
based models to display the same information content. So while it is generally
easier to get an overview of a graphical model compared to a textual model, the
graphical model is more wide-spread and thus less information can be seen on a
screen or a sheet of paper. To understand the details, either many pop-ups are
necessary or a lot of scrolling/zooming has to be done. As developers usually
are more concerned with details than with grasping a first understanding of a
model, text-based models seem to have advantages in the long run.

Furthermore, text can be printed very easily, while graphical models, espe-
cially for complex and huge systems, often exceed the size of a sheet of paper in
horizontal and vertical direction. Experiences also show that the information on
one page can more easily be grasped from graphical documents, but the higher
number of printed pages nullifies this advantage.

Speed of creation. With today’s tools writing text is a lot more efficient
than drawing graphical models. The latter often use drag-and-drop, menus and
pop-ups to fill in details of the graphically depicted form. While this is very
helpful for the inexperienced modeler, working with these graphical tools is a
time-consuming task. Modelers constantly have to switch between mouse and
keyboard. Only one pop-up is visible at a time and it takes a number of mouse-
clicks to switch between different elements. In addition these menus and wizards
tend to enforce complete definitions before allowing the modeler to progress
adding data elsewhere. This seriously hampers the creative development process
and hinders evolution.

Integration of languages. Not everything that needs to be described during a
development process should be depicted graphically. Visual languages [21] tried
to do so and failed because of lack of developer efficiency. Today, it is common



among modeling tools that some parts, in particular for describing conditions
and actions should be textual. However, these are often badly integrated or not
conveniently reachable. If all languages are textual, the integration is much easier
and leads to more understandable models.

Speed and quality of formatting. The placement of graphical models is a
time-consuming process which distracts the user from the actual modeling task.
This could be done by layout algorithms, but even for small models their results
are often not acceptable. Formatting text is a much easier task and the results of
standard algorithms are of high quality. The main reason is that depending on
the semantics of the model elements the developer has a special layout in mind
whereas automatic algorithms cannot consider this information.

Platform and tool independency. Since text requires neither a specific plat-
form nor a specific environment for reading and modifying, the development,
enhancement and correction of models can be done almost anywhere. Our ex-
periences show that this is an important advantage over graphical languages
because it is possible to read and modify the models in different environments
without installing additional tools. This advantage even holds, if we provide
special support (syntax highlighting, etc.) in form of an Eclipse plugin, because
Eclipse runs on many platforms and even more important, its use is not manda-
tory.

Version control. Version control plays an important role in software devel-
opment teams. Today’s most commonly used version control systems, CVS and
SVN are text-based and therefore can easily be used for an efficient version con-
trol for text-based models as well. Both can be included in nearly every IDE,
and more important, both can be used on command line to preserve platform
and tool independency.

Although there are approaches for visual models to store them in reposito-
ries, neither is the calculation of differences between these models fully under-
stood yet, nor do merging algorithms of those models work in general. However,
merging of text on line basis works very well. Thus, for textual models normal
text-based version control systems like CVS or SVN can be used. Experiences
show, that using such version control systems on serialized models in XMI for-
mat does not work either, because little changes in the visual models can lead to
large changes in the respective serialization and thus to conflicts. Furthermore,
due to the unreadable XML data format conflicts are not easily resolvable by
users.

Using text-based models also has some disadvantages for the developer. E.g., as
discussed, graphics are more intuitive in order to get a first orientation. Modern
text-based development tools have incorporated this idea by usually giving an
outline of the detailed code, e.g., in form of a list of defined elements. This outline
can also be a tree, showing defined states or used methods of a state machine
for example.



It is of course a big advantage of visual tools that simulation and animation
look a lot more intuitive using graphics. This might be an argument to provide a
graphical representation for simulation purposes even, if just a textual language
is used for development.

However, one may argue that the best solution would be an interchange-
able format giving the user the choice between graphics and text. In this case,
the abovementioned points such as lower speed and quality of formatting and
especially the tool dependency are still valid.

3 Advantages for the Tool Developer

Text-based modeling, however, does not only have advantages for the developer
(which is the user of the modeling tool), but also for the developer of a modeling
tool. These advantages become particularly interesting, when the forthcoming
multitude of domain specific languages (DSLs, [2]) is considered. The many new
DSLs that will emerge must easily be definable together with appropriate tool
support. Using textual languages has a number of advantages here as well:

Editors (almost) for free. A textual language can be handled by using or-
dinary textual editors. Even, if syntax high-lighting and auto-completion are of
interest, this can be achieved rather easily in a number of editing environments.

Outlines and graphical overviews. As CASE tools show, it is possible to
create graphical views from textual input. Sophisticated graphical modeling tools
like MetaEdit+ [14] simplify the creation of new modeling languages. However, it
still takes a lot of effort to use these tools and the experiences with our MontiCore
framework or similar approaches like ASF+SDF [22], TCS [10] and Xtext [16]
demonstrate that support for developing text-based languages can still be a lot
more efficient.

Parsers, pretty print, code generators and translators are rather easily
developed. Other standard tools, like a parser is developed as easily as an XML-
parser using appropriate tools, like ANTLR [17] or a DSL-definition framework
like MontiCore [12]. The latter e.g. allows to develop internal representation of
the abstract syntax (meta-model) according to the given concrete textual form
of the model. Definition of good layout-rules as well as development of a pretty
printer are much easier.

Composition of modeling languages. Many domain specific languages will
be similar to each other, will be extensions of given programming or model-
ing languages or would like to reuse subsets of other languages. For example
ArchJava [1] or LINQ [13] use these techniques to improve the usability of pro-
gramming languages.
An easy, reuse-enabling composition of modeling languages in various forms is
therefore inevitable and can to our experience much easier be achieved by using



textual languages. Here, syntactic and tool integration can be realized by shared
symbol tables and attribute grammars. In MontiCore we developed an infras-
tructure for composing languages as well as their lexical analyzers and parsers
allowing a first composition of languages on the tooling level. This language
composition technique increases the reuse of existing languages and therefore,
simplifies the tool development.

4 Empirical Studies

Papers which present graphical modeling tools usually do not compare their
approaches to textual versions. They implicitly assume that “graphical repre-
sentations are better simply because they are graphical” which is questioned
in [18]. Results of a case study in which concrete problems are modeled using
textual and graphical notations are analyzed. The authors argue that both text
and graphics have their limitations and quality is not achieved automatically,
although the authors reason that graphics have a higher potential of misleading
the reader.

Finding further empirical evidence in literature to support or invalidate our
hypotheses that textual modeling is underrated and superior to graphical model-
ing in a lot of cases is difficult. To support our view, we list a non-representative
list of textual modeling languages that are preferred although graphical notations
and tools exist. In [9] the development of a textual meta-modeling language is
described because existing graphical tools lack usability. The authors state that
after two years of experimenting with their approach they are convinced of the
practicality. The tool USE [4] that supports validation and animation of UML
specifications uses class diagrams and OCL invariants as inputs in textual form.
USE outputs sequence and object diagrams graphically. Similarly, Alloy [8] for
modeling and analyzing object systems consists of a textual specification lan-
guage. Additionally, a graphical representation is provided. Another example for
the usage of textual syntax for modeling languages is defined in the ITU-TS rec-
ommendation Z.120 [7]. It introduces a grammar for Message Sequence Charts
used to describe interactions between objects or processes [6]. Furthermore, [5]
indicates that visual programs of a language for circuit design were harder to
comprehend than corresponding textual programs.

5 Text-based Modeling using Eclipse

To demonstrate the validity of the positions discussed above, we briefly sketch
our text-based modeling approach and its advantages. The approach used is
given in form of generated Eclipse plugins as nowadays integrated development
environments (IDE) are more popular among developers than plain text editors.
Especially Eclipse gained tremendous attention due to its extensible nature [3].

Eclipse allows the development of language specific functionalities. To our
experience this extension mechanism is powerful, but it requires quite a lot of



Fig. 1. State machine defining a simple car rental system

(unnecessary) repetitive programming to add assistance for any new textual lan-
guage. This is an ideal target for code generation for MontiCore that allows the
generation of syntax-driven editors, which support syntax-highlighting, outlines,
and foldable source parts. In addition to language specific plugins, Eclipse sup-
ports the user by providing language independent services like version control
including a conflict resolving editor and build management tools.

Example

We demonstrate the advantages of text-based modeling by a textual version of
the UML state machines [20]. Our state machines embody hierarchical states,
but no parallel states or history, and allow the use of Java expressions as state
invariants and preconditions of transitions. Additional methods and attributes
can be defined outside of the state machines. In this form they can be integrated
in any Java project as an executable modeling language (Figure 1).

From the language user point of view this version of state machines is easily
applicable. To ensure platform and tool independency the plain text files defining
a state machine can be modified using a simple text editor. Because of the intu-
itive and simple syntax used for the state machines concurrent changes reported
by a version control system are often solved automatically. This is in contrast
to graphics, where even simple changes like the redefinition of a transition can
cause complex reformatting in the graphical representation of a state machine



and a useful representation of both versions of the changes are hard to visualize.
The formatting of the textual state machine is done by fast and simple indenta-
tion instead of time-consuming adjustment of graphical elements. Modifications
can be done without any pop-ups or switching between mouse and keyboard.
For a more comfortable editing we generated an Eclipse plugin which includes
different comfort functions.

To reuse already existing languages as much as possible, the definition of
the Java expression language is used within the state machine language. By
combining both parsers for the state machine and Java, the code can be processed
and syntactically checked before the program code is generated. In this way
syntax errors in both languages are shown in the state machine itself and not
in the generated code as common in other CASE-tools. Thus errors are more
transparent for the language user.

The development of this modeling language was highly supported by Mon-
tiCore offering the definition and processing of textual languages including lan-
guage composition. As a grammar for Java was already included in MontiCore
only the state machine language had to be defined. Additionally, most of the
infrastructure described above could be generated using MontiCore.

All this is convenient and efficient: The tool developer has considerably re-
duced efforts to make such a modeling language working, especially when com-
posed from existing fragments of other languages. The system developer can
efficiently use the editors and in particular the model analyzer and code gener-
ator, which allows a much more agile form of software development.

6 Conclusion

In this position paper we discussed arguments for text-based modeling and de-
scribed first experiences that we made, when developing and using text-based
modeling languages. There is some evidence, that text-based modeling consti-
tutes a noteworthy alternative to graphical modeling because of its simple usage,
scalability and easy development and reuse of tool support. This becomes par-
ticularly interesting when many domain specific languages will be developed in
the next decades.

To substantiate the described experiences we are planning to set up case stud-
ies where we compare a textual version of the UML/P [19, 20] to other mainly
graphical UML modeling tools with respect to handling and understanding mod-
els of different style and size, as well as the resulting effects in terms of efficiency
and quality of the developed system.

Acknowledgment: The work presented in this paper is undertaken as a part of the

MODELPLEX project. MODELPLEX is a project co-funded by the European Com-

mission under the ”Information Society Technologies” Sixth Framework Programme

(2002-2006). Information included in this document reflects only the authors’ views.

The European Community is not liable for any use that may be made of the information

contained herein.



References

1. Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: connecting soft-
ware architecture to implementation. In ICSE, pages 187–197, 2002.

2. Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

3. E. Gamma and K. Beck. Contributing to Eclipse: Principles, Patterns, and Plugins.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2003.

4. Martin Gogolla and Mark Richters. Development of UML Descriptions with USE.
In EurAsia-ICT ’02: Proceedings of the First EurAsian Conference on Informa-
tion and Communication Technology, pages 228–238, London, UK, 2002. Springer-
Verlag.

5. T. R. G. Green and M. Petre. When Visual Programs are Harder to Read than
Textual Programs. In Human-Computer Interaction: Tasks and Organisation, Pro-
ceedings ECCE-6 (6th European Conference Cognitive Ergonomics), 1992.

6. D. Harel and P. S. Thiagarajan. UML for real: design of embedded real-time sys-
tems, chapter Message sequence charts, pages 77–105. Kluwer Academic Publish-
ers, Norwell, MA, USA, 2003.

7. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99).
Technical report, ITU-TS, Geneva, 1999.

8. Daniel Jackson. Alloy: a lightweight object modelling notation. Software Engi-
neering and Methodology, 11(2):256–290, 2002.

9. Frederic Jouault and Jean Bezivin. KM3: a DSL for Metamodel Specification. In
Proceedings of 8th IFIP International Conference on Formal Methods for Open
Object-Based Distributed Systems (LNCS 4037), pages 171–185, 2006.

10. Frederic Jouault, Jean Bezivin, and Ivan Kurtev. TCS: a DSL for the Specification
of Textual Concrete Syntaxes in Model Engineering. In Proceedings of the fifth
international conference on Generative programming and Component Engineering,
2006.

11. Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Devel-
opment using Domain Specific Modelling Languages. In Proceedings of the 6th
OOPSLA Workshop on Domain-Specific Modeling 2006, pages 150–158, Finland,
2006. University of Jyväskylä.

12. Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of Ab-
stract and Concrete Syntax for Textual Languages. In Proceedings of Models 2007,
2007. to be published.

13. Linq. The LINQ Project, 2006. http://msdn.microsoft.com/data/ref/linq/.
14. MetaCase Website http://www.metacase.com.
15. Object Management Group. Human-Usable Textual Notation V1.0 (04-08-01),

August 2004. http://www.omg.org/docs/formal/04-08-01.pdf.
16. OpenArchitectureWare Website http://www.openarchitectureware.com/.
17. Terence Parr and Russell Quong. ANTLR: A Predicated-LL(k) Parser Generator.

Journal of Software Practice and Experience, 25(7):789–810, July 1995.
18. Marian Petre. Why looking isn’t always seeing: readership skills and graphical

programming. Commun. ACM, 38(6):33–44, 1995.
19. Bernhard Rumpe. Agile Modellierung mit UML : Codegenerierung, Testfälle,

Refactoring. Springer, Berlin, August 2004.
20. Bernhard Rumpe. Modellierung mit UML. Springer, Berlin, May 2004.
21. S. Schiffer. Visuelle Programmierung. Grundlagen und Einsatzmöglichkeiten.

Addison-Wesley, 1998.



22. Mark van den Brand et al. The ASF+SDF Meta-Environment: a Component-
Based Language Development Environment. In Proceedings of Compiler Construc-
tion 2001 (CC 2001), LNCS. Springer, 2001.


