<«Javax>OCL Based on
New Presentation of the OCL-Syntax

Bernhard Rumpe

Technische Universitdt Miinchen,
Arcisstr. 21, D-80333 Munich, Germany,
Rumpe@in.tum.de

Abstract The Object Constraint Language (OCL) is a part of the Uni-
fied Modeling Language (UML) — an emerging standard language for
object-oriented analysis and design. OCL is designed as a formal lan-
guage for specifying constraints that cannot be expressed conveniently
using UML’s diagrammatic notation.

This article describes results of a careful analysis of the syntactic struc-
ture of OCL, resulting in a number of improvements of the OCL-syntax.
In particular, a new and better readable grammar describing OCL is
defined. The paper enhances not only the language OCL itself, but in
particular its presentation.

Given the new grammar, a Java-style variant of OCL with essentially the
same abstract grammar is defined, which should be more comfortable to
Java-programmers.

1 Introduction

The Unified Modeling Language (UML) [17] has become the de-facto standard
for modeling object-oriented systems. The UML is a graphical description lan-
guage and therefore, similar to most other graphical languages, limited in its
expressiveness. The Object Constraint Language (OCL) [16] is a precise textual
specification language used to complement graphical modeling languages. OCL
was designed to express logical constraints within a UML model that cannot or
not conveniently enough be expressed with the mainly diagrammatic UML. In
particular, OCL supports specifying invariants of classes in a class model and
describing pre- and postconditions of operations and methods.

OCL is a textual supplement of UML. As such, it needs to be pragmatic in
use, but still concise enough in its definition to be assisted by tools, such as a
parser and a type or consistency checker.

The history of language definitions shows, that it is impossible to define
a sufficiently useful language in perfect shape from the very beginning. Many
different syntactic, semantic, and methodical issues have to be resolved, and
different stake-holders want a language adapted for particular needs. Therefore,
it is not surprising that the relatively young OCL has some syntactic and se-
mantic flaws that need to be fixed. Fortunately, OCL can build on a large basis
of work on already defined languages, starting from the programming languages

2 Bernhard Rumpe

like Modula-2 [21] or Java [9], including OCL’s own predecessor [6], up to textual
specification languages such as VDM [7] and Spectrum [3]. The research on lan-
guage definition shows that not only the language itself, but also its presentation
can be improved to make it more amenable for tools as well as for reading and
understanding the language.

The purpose of this article is not to provide OCL with semantics. Instead
this article concentrates on the syntax and the presentation of this syntax of
OCL. In Section 2 separation between syntax and its presentation is discussed
in detail. Section 3 furthermore discusses how to use OCL at the meta-level
without explicitly including the meta-level of OCL. In Sections 4 and 5 the
original OCL grammar given in the OCL specification is re-formulated and the
context conditions are adapted based on the insights gained before. Section 6
then presents a syntactic variant of OCL that is oriented towards Java. It is
called «Java>OCL and might be regarded as Java-profile of OCL.

It is assumed that the reader is somewhat familiar with OCL as well as with
UML class diagrams.

2 Langauges and their presentation

This paper restructures the presentation of the expression part of OCL so that
its grammar rules are structurued in a way similar to that of Java (and C++).
To understand the impact of such a restructuring, it is necessary to look at how
language definition works in general. Formally, a textual language is a set of
well-formed sentences over a basic alphabet. This holds for natural languages as
well as for Java and OCL.

/

WFL

target language:
well form
sentences

context free sentences,
but e.g. not well typed

\ all words over a given alphabet

Figure 1. The hierarchy of language definition

A*

Given an alphabet A (e.g. the ASCII or Unicode character sets), a language is
a subset of all words over that alphabet. Among others, Java, Pascal and OCL are
examples. Due to the fact that these languages have infinite numbers of sentences
(i.e. possible class definitions in Java), a finite, compact and understandable
characterization of such a language is necessary.

«Javax>OCL Based on New Presentation of the OCL-Syntax 3

Normally a compact definition is achieved in two steps. In a first step the so
called context free language is defined using a grammar. The grammar of a lan-
guage therefore presents a language. The extended Backus-Naur-Form (EBNF)
is a comfortable way to describe the grammar. Its conventions are':

Identifiers included in {) brackets denote nonterminal symbols.

Underlined boldface font denote terminal symbols.

— The empty word is denoted by €.

Brackets {...} are used for grouping.

— Alternatives are separated by a vertical bar |.

— Constructs followed by a Kleene star, such as (identifier)* and {...}* can be
repeated zero or more times.

— Optional parts are expressed by a question mark °.

The context free grammar of a language defines the set of context free sen-
tences, called CFL. However, still many ill formed OCL-expressions may exist.
Well known examples are violated typing rules or variables that are used, but
not declared or have a wrong type. Therefore, in a second step, context con-
ditions further constrain the CFL, resulting in a set of well-formed sentences
(WFL). Standard examples for context conditions are typing rules as well as rules
for variables declarations and uses. Unfortunately, there is no simple technique
similar to a context free grammar to describe context conditions and therefore
these context conditions are usually presented as informal, textual description
together with examples. In summary, there are three sets of sentences (see Fig.
1) including each other: WFL C CFL C A*. In the context of OCL this means, the
set of well formed, useful OCL expressions is identified with WFL.

The following sections concentrate on the context free language definition
of OCL (called CFL) and the improvement and reformulation of the context
conditions is left to others (see related publications in this proceedings).

Context conditions are often referred to as semantic conditions. This is par-
tially a historic fault, because context conditions are the last step to define the
language. They are heavily influenced by the intended language semantics, but
nevertheless they are defined in form of purely syntactic and therefore checkable
criteria. In particular, context conditions do not define the semantics of a lan-
guage. E.g. from a given set of context conditions on a language like OCL or
C++ the semantics of the and-operator on undefined values or non-terminating
calculations cannot be inferred. The reader is referred to [12] for a general dis-
cussion of semantics for modeling languages such as the OCL.

Furthermore, the separation between context free grammar and context con-
ditions is floating. Although, context conditions exist that can clearly not be
expressed in a context free grammar, there are other issues that can be de-
fined in context free grammars, but usually aren’t. Among them are the pri-
orities of infix operators. The OCL book defines them in context free form,
but gets blurred through a number of additional nonterminals ({expression),

! EBNF provides further operators that serve as notational shortcuts, but aren’t used
here.

4 Bernhard Rumpe

(ifExpression), (logicalExpression), (relationalExpression), (additiveExpression),
etc.). It’s more compact, readable and equally precise to use an explicit prece-
dence table, like the one in Table 1 that expresses the same information in a more
compact way. Therefore, the relationship between WFL and CFL of a language can
strongly be influenced by an intelligible definition.

Name Syntax Associativity
Unary operations -, not right
Multiplication and division *, / left
Addition and subtraction +, - left
Relational operations <, >, <=, >= left
Relational equality =, <> left
Logical operations and, or, xor left
Logical implies implies right

Table 1. Precedence for OCL operations (highest to lowest).

Furthermore, a distinction between the grammar that characterizes a lan-
guage and the language itself is important. There are numerous grammars that
describe the very same (context free) language. As a simple example, the gram-
mar (X) ::=a { b (X) a }* b describes alternating ab-structures. Another gram-
mar for the very same ”language” can be defined by:

(Y) ::= (ADAM)" (ADAM) (ADAM)"
(ADAM) ::= a (EVE)
(EVE) ::= b (ADAM)’

Both grammars present the same language ab{ab}*, but strongly differ in
their structure. One important purpose of this article is to restructure the given
context free grammar of OCL. These changes aim at an improvement of the
grammar of OCL to become more amenable to an interested reader, as well as
to be more compact for a tool implementation. Along the way of improving the
grammar, there will also be a number of language improvements that will be
discussed in the next sections.

3 The use of OCL. What are meta-levels good for?

3.1 Fitting OCL into a language category

The Object Constraint Language (OCL) defines itself as ”an expression language
that enables one to describe constraints on object-oriented models and other
modeling artifacts.” ([20], pg. xix). Heavily based on the constraint concept, it
explicitly gives its own interpretation of this term in an object-oriented setting
by ”a constraint is a restriction on one or more values of (part of) an object-
oriented model or system.” ([20], pg. 1).

«Javax>OCL Based on New Presentation of the OCL-Syntax 5

However, OCL exhibits some characteristics of other kinds of languages and
lacks some standard concepts of constraint languages. Therefore, a short compar-
ison of OCL to other languages seems appropriate. The main language categories
that are not necessarily disjoint are:

modeling language allows abstract characterizations of the modeling domain,
which may be a system as well as business or other forms of environment.

object-oriented language encompasses the concept of object, together with
dynamic creation, identity, and normally also inheritance and classes.

programming language is primarily characterized through being executable
in such a way that it constructively transforms its input (and internal data
structures) into an output result.

logic language provides logic concepts, such as Boolean operators and quan-
tifiers to describe properties of systems and their data structures.

functional language is an highly compact, executable language that operates
without side-effects.

OCL exhibits some characteristics of most of these languages. However, it is
not a full modeling language, because OCL does not provide concepts to define
new data structures. New classes, methods, or constants cannot be introduced.
Therefore, OCL is only intended to be used together with an existing modeling
language, such as UML, that needs a supplement for describing constraints.
In this combination OCL also exhibits the characteristics of an object-oriented
language, because it incorporates the UML typing system.

The relationship of OCL to logic is somewhat difficult. Yes, OCL provides
Boolean operators, like and, etc., but these are present in programming lan-
guages, like Java, as well. The basic question here is, how OCL treats undefined
values. To show the differences, Fig. 2 gives an overview of possible semantics of
the and-operator, where some are useful for logic and some are useful for execu-
tion. Differences in the presented truth tables are underlined. E.g. in C++ A and
B and its commutative B and A are distinguished, where in logic languages this
hampers the usability of a language. Current definitions of OCL take different
and sometimes inconsistent approaches [20].

Yes, OCL provides two quantifiers, forall and exists, but only for finite
domains. Therefore, OCL is only a propositional logic. This means that without
further concepts, OCL is neither capable of specifying the transitive closure of
the subclass relation ([5]) nor many other recursive or loop based properties.
Fortunately, OCL provides some built in data types such as Integer or Strings
and can rely on UML based data types as well. Based on given method imple-
mentations of the UML model it is possible to specify many constraints beyond
propositional logic. In summary, OCL is a propositional specification language
that exhibits additional power through data structures and operations provided
by UML.

OCL is not a general programming language. It is widely believed, that OCL
is executable. This belief is correct in the sense that there are algorithms that can
decide on constraints written in propositional logic. However, there are a number
of subtle problems among others with non-terminating operations provided by

6 Bernhard Rumpe

Classic 2-valued Logic:

anb True False
True True False
False False False

Parallel implementation and

- . Kleene-Logic:
Strict, implementation:

aand b True False Undef anb True False Undef
True True False Undef True True False Undef
False False False Undef False False False False
Undef Undef Undef Undef Undef Undef False Undef
Sequential, for implementation (Java): Lifting (Undef treated as False):
a&&b True False Undef anb True False Undef
True True False Undef True True False False
False False False False False False False False
Undef Undef Undef Undef Undef False False False

Figure 2. Possible implementations of the and-operator

UML. Assuming that OCL is executable, it unfortunately cannot constructively
change any data structure, because it can only compute Boolean values that
tell, whether some constraint is violated or not. E.g. if a post-condition of form
a<b is given, then it can check whether that condition holds. However, it cannot
easily correct that condition. It may increase b or it alter a, or both? Although,
there are standard solutions for particular cases, e.g. there cannot be a solution
for general constraints. For example in f (a)=g(b) there is no general solution if
it is assumed that both methods are provided by underlying UML models and
OCL doesn’t know anything about them.

Under the assumption that OCL is executable, it is very similar to the ex-
pression part of a functional language. It calculates values without changing the
underlying data structures and therefore without side-effects. If an executable
version of OCL was embedded in an ordinary language, e.g. by using OCL as
expression sublanguage then a compact general programming language would
be given. GOS [19] is an example for such a successful combination.

3.2 Where to use OCL?

Being a mixture of propositional logic and functional language that heavily de-
pends on the underlying UML models OCL can serve a number of different
purposes.

OCL code may be added to a running system for testing purposes. The OCL
constraints are then used like assertions in C++ or Eiffel’s contracts in form of
pre- and postconditions.

This may be a very effective means of defining model based tests. If direct
generation of code from OCL is feasible and this is ideally accompanied by code
generation from the UML model itself, then the Extreme Modeling approach
[2,14] becomes feasible. The basic idea of the Extreme Modeling approach is the

«Javax>OCL Based on New Presentation of the OCL-Syntax 7

replacement of an ordinary programming language for coding and test specifi-
cation by a high-level graphical approach, based on UML and OCL. OCL then
plays a vital role in the software development process as a constraint defini-
tion language for the description of automated tests. This can greatly enhance
the productivity of the programmers. Furthermore, modeling and programming
become one combined activity.

It is worthwhile to distinguish development-time and runtime. During de-
velopment-time the system is being developed. The source code and models
of the system are available and these artifacts are iteratively enhanced, detailed
and transformed. During runtime the source code has been translated into object
code and is executed. Above the usefulness of OCL during runtime was discussed.
The benefits of OCL during development-time and which OCL constraints can
be executed during development is discussed below.

For stability of the running application, for efficiency and a number of other
reasons, it makes sense to restrict reflective access and modifiability of systems
during runtime. Although there are systems that allow dynamic adaptation, and
this is sometimes very useful, in most cases this kind of runtime adaptability
is rather restricted and deals with coarse modifications only. E.g. Java allows
dynamic load of complete classes or packages with well defined interfaces, but not
to adapt single methods or attributes within a class. Common Smalltalk systems
of course are exceptions to that rule, because they allow rather unrestricted
access to their own meta-levels. However, this feature should not be used widely
as it is dedicated to experienced programmers mainly. Further drawbacks of
reflective access are the increased complexity for understanding the code and
the lack of a typing system.

However, reflection in sequential programming languages is generally un-
derstood by now. In a specification language, such as OCL, the access of the
meta-level directly within OCL is widely unclear and unnecessary. First, it is
widely unclear, because it allows to specify weird statements, such as class Car
does exist exactly, if the attribute age of object tim:Person is not 5:

tim.age <> 5 xor 0clType.allInstances(x | x.name <> "Car")

How is that to be implemented? a) ensure tim is older than 5, b) ensure
tim.age=5 and don’t implement class Person, or c) delete class Person when
tim becomes 57

tim.age <> 5 is an expression to be executed during runtime, the other
part is to be evaluated during development-time where objects like tim aren’t
yet available. OCL, therefore, mixes evaluation times by providing direct access
on the meta-level.

The primary purpose of the OCL meta-level is to allow the developer to talk
about properties of a UML (and OCL) model during development-time, such as:
”1If class Person provides method foo (), then so does class Child”. Fortunately
meta-level access is not necessary within OCL itself. The trick is to provide
this meta-level access through the underlying UML meta-model. 0c1Type then
becomes an ordinary UML class and is not part of OCL itself.

8 Bernhard Rumpe

Furthermore, a specification language for describing runtime behavior e.g. in
form of pre- and postconditions and another specification language that describes
restrictions on the modeling elements must be strictly distinguished. The idea is
to use OCL at both levels and to call them meta-OCL and runtime-OCL. Both
are entirely disconnected and just by coincidence have the same look-a-like. The
English language e.g. can be described using the English language itself, but it
could also be described using an entire different language. Many other examples,
where languages are used to describe themselves can be found. E.g. the EBNF
to describe context free grammars can itself be defined using EBNF — both
appearances of EBNF are fully separated.

Runtime-OCL talks about objects and values. The term tim.age <> 5 be-
longs to this language. Meta-OCL talks about classes, their attribute structure
and associations. The term 0clType.allInstances(x|x.name<>"Car"), which
can easily be checked during development-time, would belong to Meta-OCL. A
combination of both expressions would be syntactically disallowed. OCL would
be type checked and executable at both levels separately.

At development-time OCL can describe constraints that may not be violated
by UML models. E.g. if a class is tagged by a certain stereotype <EJB>, then
it should provide certain functionality. OCL is surely feasible here. However,
it would be of interest to link meta-OCL constraints with procedures at the
meta-level that help to repair violated constraints, e.g. through automatically
or interactively adding required functionality. Meta-level procedures act during
development-time, where the developer is still available.

In summary, it becomes clear that a meta-level needs not be accessible within
OCL. As a conclusion the meta-level of OCL is removed in the following. The
OCL grammar is in the following restructured and the OCL context conditions
are re-formulated appropriately, so that this flaw in the presentation of OCL can
be amended. Furthermore, OCL becomes much simpler and more understandable
to programmers.

4 The new OCL Grammar

OCL can be described by a context free grammar like any other language. In
this section, an enhanced version of such a grammar through refactoring of the
grammar originally given in [16] will be provided.

One of the most important changes concerns the strict separation of logic level
and meta-level discussed in Section 2. In specification languages, e.g. SPECTRUM
[3] and in all strongly typed programming languages, meta-level and logic level
are never mixed.

The redefined grammar below is partly supplied with an explanation where
considered necessary. Please note that is is assumed that the reader has some
familiarity with OCL as provided in [16]. The following grammar rules are all
formulated in EBNF as introduced in the previous section.

In the grammar’s restructuring the identifiers {className), (attributeName}),
(roleName), (methodName), (packageName), (stateName), and (varName) were

«Javax>OCL Based on New Presentation of the OCL-Syntax 9

introduced supplementary. They are equal to (name). Using these identifiers
instead of (name) makes the grammar easier to read.

Note that the grammar restructuring to a large extent focuses on a better
grammar presentation, not on the language adaptation, even if some changes are
made. The following section 5.4 discusses these changes on the language itself.

A constraint can either specify an invariant or describe pre- and/or postcon-
ditions but never do both at the same time. This is made explicit in the redefined
grammar. Furthermore, the order of appearance for pre- and postconditions has
been defined. Moreover, empty context declarations are allowed when neither
the keyword self, nor any alternative single object occurs within the constraint
expression.

(constraint) ::= context (clContext) inv { (name) }” : (exprList)
| context (opContext)
{ pre { (name))7 : (exprList) }°
{ post { (name) }” : (expriist)
| (exprList)
(c1Context) : := { (name) : }* (class)
(opContext) : := { (name) : }* (class) :: (methodName) ((fParamList)’)

{ : (typeExpr) }’
(fParamList) ::= (fParam) {l (fParam) }"

(fParam) : := (varName) : (typeExpr)

The OCL specification [16] allows an alternative name for self within the
class context specification, whereas within the operation context specification
such an alternative is not allowed. This can be more systematic, by allowing
alternative names in both cases.

To reduce the number of required non-terminals and grammar rules, the
precedence rules for operations are given by a separate table. A complete prece-
dence rules table is given separately in Section 5.3. As already discussed in
Section 2 these could be expressed within grammar rules as well, but their pre-
sentation is more compact and readable within the precedence rules table.

(expr) ::= (unaryExpr) { (infixOp) (unaryExpr) }"
(unaryExpr) ::= (unaryOp)" (primeExpr)
(unaryOp) ::= — | not
(infix0Op) ::= and | or | xor | implies
I=l>I<|>=l<=1<>1+1=1x]/

Unfortunately, the description of (primeExpr) and related non-terminals in
[16] is rather confusing. This makes it quite difficult for the reader to understand

10 Bernhard Rumpe

what exactly expressions are and what their meaning is. After a detailed anal-
ysis of (primeExpr) the following restructuring was developed. Due to its many
variants, the grammar rules for (primeExpr) are presented in several parts:

(primeExpr) ::= (letExpr)
ifExpr)

(
({expr))

collectKind) { { (collItem) {, (collltem) }" 15

(

(property)
(primeExpr) . (property)
(

primeExpr) . (collectFeature)

In [16], the literal collection allows either a single range of values or a list of
individual values, but not all in one, e.g. Set {1, 4..7, 11..13, 2}. The grammar
was extended accordingly, by enhancing the (collltem) later on.

The original specification uses an arrow symbol -> for calling a collection
operation. The operations of the other types however, are called like a usual
property with a dot between both arguments, like e.g. i.abs (absolute value
of an integer i). This lack of uniformity adds unnecessary complexity to OCL.
This complexity was removed by replacing the arrow with a dot. The often heard
argument, that it is necessary to distinguish normal features from OCL-features
using arrows, simply does not hold, because a type system can easily resolve
name clashes.

(primeExpr) ::= -- continued
| {type)
| (1iteral)
| self

| result

Not only constants, but also the special keywords self and result, types,
and in particular class names may be used at expression position. A class name
used as expression is interpreted as the set of all existing objects of that class
at that time. This replaces the superfluous OCL feature allInstances. Class
names can then be used in two functions. They are allowed, both where types or
set values are appropriate and their position can be resolved because of a well
structured grammar. As the new grammar distinguishes between (typeExpr) and
{expr), this approach works.

«Java»OCL Based on New Presentation of the OCL-Syntax 11

(primeExpr) ::= -- continued

(primeExpr) .oclAsType ((typeExpr))

primeExpr) .oclIsKindOf ((typeExpr))

primeExpr) .oclIsInState ((stateName))

{
(typeifExpr)
(
(

primeExpr) .ocllsNew

The special operation p.oclAsType(T) means the type of expression p is
changed to T. The second special operation p.oclIsKind0f (T) evaluates to true
exactly if the value denoted by p is of type or a subtype of T.

The four OCL specific constructs oc1IsKindQf, oc1AsType, oclIsInState,
and oclIsNew are explicitly included in the (primeExpr) grammar rule. This
shows that these properties are not normal functions, but special control con-
structs. For example, in programming languages like Java, the casting of objects
differs syntactically from ordinary method invocation. Unfortunately, OCL syn-
tax did not distinguish this and, therefore, OCL is confusing here, because it
tried to fit every concept into method call structure. Now this principal distinc-
tion is demonstrated at least in the presentation of the syntax. Furthermore,
this rearrangement makes it unnecessary to treat their arguments as objects.
Therefore, meta-level type 0c1Type is not needed here anymore.

Unfortunately the casting construct oclAsType has the drawback that it
needs to deal with cast failures. This may not result in a raised exception, as
logic doesn’t raise exceptions at all. The newly introduced alternative construct
{typeifExpr) combines the cast with an if-then-else construction that allows
to specify both cases and should largely replace oc1AsType (see below).

In the last part, timed expressions, qualified associations and usage of roles
are defined in the same way as it had been given in original OCL.

(primeExpr) ::=-- continued
| (primeExpr) Qpre
| (primeExpr) [(exprList)

|
|

| (primeExpr) [(roleName)

The definition of the let expression is extended by multiple bindings. It is
now possible to declare more than one variable at the same time. Furthermore,
a let expression can be used within other let expressions.

The (typeifExpr) rule allows a variable to be introduced and bound to an
expression. The variable has the casted type in the then-part and its original
type in the else-part.

12 Bernhard Rumpe

(letExpr) ::= let (declList) in {expr)
(ifExpr) ::= if (expr) then (expr) else (expr) endif
(typeifExpr) ::= typeif (decl) isof (typeExpr) then (expr) else {(expr) endif
(property) ::= (attributeName)

| (methodName) ((exprList)’)
| (roleName)
(literal) ::= (char) | (string) | (number) | (bool)

| (¢numTypeName) :: (name)

Predefined operations applicable to the basic types Integer, Real, String
and Character, such as abs, floor, or size are treated like ordinary method
calls. In case they don’t have arguments, they are like attributes. See [16] for a
full list of operators.

In [16], the possibility of specifying with Boolean values was missing and has
been added here.

The definition of the enumeration types in [16] exhibits some inconsistency
when compared to the UML enumerations. All enumeration types and their val-
ues must be defined in the underlying UML model. Therefore, each enumeration
type already has a name. The redefined grammar uses the same notation as for
class pathnames to refer to a certain enumeration type. If the enumeration type
Color among others contains the element red, then Color: :red is a qualified
enumeration value.

The nonterminal (collectFeature) describes the features of collection types.
For brevity in the following only a few examples of each category are listed, i.e.
operations without parameter, operations with one parameter of type (expr),
but all the special constructs with their specific parameters. A complete list of
the normal features can be inferred from the official OCL definitions.

(collectFeature) ::= size | isEmpty | ...

| includes ((expr)) | union ({(expr)) | ...

| select ({vax) | (expr))
| reject ((var) | (expr))

| collect ({vaz) | (expr))

| forAll ((varList) | {expr))

| exists ((varList) | (expr))

| iterate ((var) ; (decl) | (expr)) | ...

The special constructs select, etc. have been redefined in their structure.
They are not treated as ordinary functions anymore, but explicitly introduced

«Java»OCL Based on New Presentation of the OCL-Syntax 13

through the grammar. In the presented grammar each of them has a block as
body. A block at first introduces and binds one or several new variables and
then allows to express a constraint over that variables. So far the OCL definition
has treated these bodies wrongly as ordinary arguments. This adaptation is a
good example for a grammar restructuring that does not affect the language, but
makes the language presentation more conform to standard language definitions.
But finally these constructs have got two changes: In official OCL it was allowed
to omit the explicit introduction of a variable, in which case the variable self was
newly introduced and bound implicitly. This can easily lead to misunderstanding
in more complex formulae and is therefore abandoned. On the other hand, for
some of these operators it is now possible to introduce several variables at once.

The non-terminals used in the above control structures look like this:

(varList) : := (var) {, (var) }"
(var) : := (varName) { : (typeExpr) }’
(declList) ::= (decl) {, (decl) }"
(decl) ::= (var) = {(expr)
(exprList) ::= (expr) {, (expr) }"
(collTtem) ::= (expr) { .. (expr) }’

Unlike the grammar of [16] this grammar explicitly allows class names to be
qualified by a package name in the non-terminal (class). This guarantees that a
package name may be given wherever (class) appears. This feature is essential
for dealing with identical class names in different packages.

{class) ::= {{packageName) ;: }" (className)

(collectKind) ::= Set | Bag | Sequence | Collection

)

)

(typeExpr) ::= (collectKind) ((type)) | (type)

(type) ::=(class) | (basicType) | (enumTypeName)
)

(basicType) ::= Integer | Real | Boolean | String | Character

The well known and often used type Character was missing in OCL and
therefore newly added to the basic types. Its operations are given in 5.2.

The rule for numbers that allows floating-point constants is extended, because
numeric constants were missing in [16]:

14 Bernhard Rumpe

(digit) ;:=[0—9]
(digits) ::= (digit) { (digit) }"
(nunber) ::= (digits) { . (digits) } {{e|E} {+| =} (@igits)}
(letter) ::=[a—zA —Z_]

(name) ::= (letter) { (letter) | (digit) }"

{char) ::= ! walid Unicode character '
(string) ::= 7 (char)" ”

(bool) ::= True | False

The resulting language is now rather conform to standard ways of presenting
expression syntax. It indeed improves readability and eases tool implementation.

5 Additional adaptations based on the new grammar

The previously defined context free grammar describes a language quite similar
to the official OCL. Tt enhances or restricts some constructs, but largely focuses
on better presentation of its context free grammar.

As a next step, it is necessary to adapt the context conditions to the new
grammar where necessary. This will not be done in this article, but a small set
of these issues will be tackled here.

5.1 Type hierarchy

In the OCL specification [16] OclAny is a supertype of both model and basic
types. On the one hand, this gives rise for some subtle type conformance prob-
lems. On the other hand, it would be more convenient to have the possibility
to address the universe of all objects, without basic values such as numbers in-
cluded. Therefore, 0c1Any now is the supertype of all class types, but excludes
the basic types and all collection types.

This also means, that Set (0OclAny) is not included in OclAny anymore, but
the universe of sets, distinct from the universe of objects. The corrected type
hierarchy is given in Fig. 3.

OclAny Real ~ String Character Boolean Enumeration types Collection (T)

Class types Integer Set (T) Bag (T) Sequence (T)

Figure 3. OCL type hierarchy

«Java»OCL Based on New Presentation of the OCL-Syntax 15

5.2 Predefined operations

As already mentioned, logic level and meta-level are strictly separated. In the
grammar as given in [16], the basic types Integer, Real, String and Boolean
are on the same level as OCL specific meta-types, namely OclExpression and
OclType. These meta-types were used in the grammar to describe specific kinds
of arguments for a number of special constructs. After the restructuring pre-
sented in this paper, these types become superfluous. Access to the meta-level
is no longer necessary. Therefore, 0c1Expression and 0c1lType can be removed.

Please note that parentheses are used within the definitions of the infix op-
erations to improve readability.

OclAny Here, object is a variable of type OclAny. OclAny has the following
signature:

object = (objectl : OclAny) : Boolean
object <> (objectl : OclAny) : Boolean

Both operations are heterogeneous. Therefore, variables object and object1
do not need to be of the same type, but may be arbitrary class types.

Basic types For the sake of brevity only a few Integer operators are shown.

Due to the type system re-arrangements, the overall equality does only accept
class types as arguments, but not basic types. Therefore, several additional equal-
ity functions on each basic type are needed. These functions can be additionally
defined, because in typed languages the syntactic overloading of methods can be
resolved statically. This means the compiler can determine, which equality is to
be used.

Here, i is a variable of type Integer.

i = (i1 : Integer) : Boolean
i <> (i1 : Integer) : Boolean
i + (i1 : Integer) : Integer

Enumeration types Enumerations defined in a UML model have to be repre-
sented within OCL constraints. There may exist various different enumerations
in a model. Therefore, the attempt of [16] to describe all enumerations with only
one enumeration type does not work properly. Instead, enumerations are treated
as individual, non-further related types. In UML, each enumeration is defined as
a special datatype and accordingly has a type name and the belonging values.
Within OCL an enumeration value is referred to by the enumeration type name
and the value name. Let enum be a variable of a given enumeration type E.

16 Bernhard Rumpe

E::enum = (E::enuml : E) : Boolean

E::enum <> (E::enuml : E) : Boolean

In languages like C++, further functionality exists for enumeration types:
for example, a linear order or a successor function.

Please note that the built-in type Boolean can be regarded as a two-valued
enumeration type.

Collection types Below the signatures of collection types are introduced as
polymorphic types. The key idea is that if an operation doesn’t care about the
value type, then it reacts uniformly regardless of what these values are.

This section deals with the predefined features on the parameterized collec-
tion types Collection(T), Set(T), Bag(T), and Sequence(T), where the type
variable T denotes any type except collection types.

In the grammar provided by this article, these features are included by the
construct

(primeExpr) . (collectFeature)

As already mentioned, in the grammar of [16] all possible features for col-
lections were treated as method calls. This was not quite correct. In fact, they
mix both method calls and specialized control structures. The grammar defined
above realizes this difference, because the control structures are explicitly men-
tioned in the grammar. This now allows to explicitly mention the variable lists
in the grammar that are separated from the normal expression syntax.

Collection-based control structures usually evaluate a particular expression
for each element in the collection. Again inspired by Smalltalk the syntax of
these control structures as defined in [16] is somewhat misleading. According
to [16] the argument of such a control structure is of type OclExpression. As
the redefinition of the grammar already shows that the binding of new variables
should be allowed in blocks consisting of a declarative part and an expression
part.

A block is an introduction of a new variable together with an expression that
uses the variable. The standard syntax for the forAll function:

Collection(T).forAll(t : T | expr : Boolean)

Quantification can range over a number of variables:

Collection(T) .forA11(t1 : T, ... , tn : T | expr : Boolean)

A block consists of one or several defined variables and then, separated by a
vertical bar |, a Boolean expression follows. Functional languages would regard
this block as a function definition based on a A-abstraction.

OCL from [16] does allow to omit an explicit introduction of a variable. In
this case, the block looks like an expression, but it still serves the duties of a
block, as implicitly the variable self is introduced. As already mentioned, the
restructured grammar does not allow implicit binding of self anymore.

«Java»OCL Based on New Presentation of the OCL-Syntax 17

5.3 Precedence Rules

For the reasons of completeness, a list of precedence rules is included here. Al-
though the rules can be modeled by the grammar itself, it is more compact and
equally precise to use an explicit precedence table.

Name Syntax Associativity
Pathname HE left
Time expression @pre left
Dot operation . left
Unary operations -, not right
Multiplication and division *, / left
Addition and subtraction +, - left
Relational operations <, >, &=, >= left
Relational equality =, O left
Logical operations and, or, xor left
Logical implies implies right

Table 2. Precedence for OCL operations (highest to lowest).

The associativity of an operator specifies the order that operations of the
same precedence are performed in. Left associativity means that operations are
grouped from left-to-right. For example:

a.b.c = (a.b).c
a/b/c =(a/b)/c
aand band c = (aand b) and ¢

a implies b implies ¢ = a implies (b implies c)

Please note that dependent on the semantics of the and operator, it is not
necessarily the case that and is associative, i.e. according to Fig. 2 it can be
wrong to replace

aand (bandc) by (aandb) andc

5.4 Summary of grammar adaptations

Three categories of adaptations can be identified. Some grammar adaptations
affect the language, other changes affect the predefined operations, and a third
group is introduced through adaptations of the context conditions. This is a
short summary of the according changes. The new grammar was compared to
[16].

Grammar based language changes Often, but not always, changes of the
grammar effect the language. A number of such grammar based language changes
is listed below.

— The consistency of the grammar was improved: previously some nonterminals
were enclosed in angle brackets, and others not.

18

Bernhard Rumpe

— Separation of invariants and pre-/postconditions within the constraint defi-

nition.

Clarification of the order in which pre- and postconditions appear.
Correction of the class context specification. It is now possible to deal with
identical class names in different packages by qualifying the class context
specification with an optional pathname.

The grammar of the context declaration was enhanced, allowing an alterna-
tive name for self also for the operation context.

The type of method parameters as well as the return type of a method was
changed to (typeExpr), which additionally contains collection and enumera-
tion types. This allows the underlying UML model to provide methods for
OCL constraint specifications with that according types.

Method parameters are now separated by comma instead of semicolon.
Precedence rules have been removed from the grammar and given in a prece-
dence table.

Unary operators are now allowed to occur repeatedly.

The grammar for the non-terminal (primeExpr) was largely restructured.
The syntax for the literal collection was changed to allow more general enu-
meration and number constants.

The arrow symbol, used for calling a collection operation, was replaced by a
dot.

The let-expression was extended so that firstly, multiple bindings are allowed
and secondly, more than one let-expression may occur in an expression.
Nonterminal (literal) now contains the Boolean values.

The definition of the enumeration types was corrected, since in [16] it is
inconsistent with the UML meta-model.

Whenever a class name is used, this class can be qualified using a path name.
Numbers now include floating-point constants.

Along with the introduction of the new type Character the notation of
strings was adapted. In the redefined grammar, strings have to be enclosed
by double quotes.

Change of the predefined operations

The operator <> was added to the operations of Integer, String, Boolean
and the three concrete collection types.

Integer and String were additionally completed by the operations <, <=,
>, and >=.

The operations on collection types where divided in method calls and control
structures.

The block concept was introduced for the control structures.

For the operations includes, excludes and count the type of the called
argument was changed to the type of the collection elements.

The forAll operation has an extended variant.

«Java»OCL Based on New Presentation of the OCL-Syntax 19

Change of the context conditions

— The type hierarchy of OCL was adapted: the type 0clAny is not a supertype
of the basic types or the collection types anymore.

— For a strict separation of logic level and meta-level, the meta types 0c1Type
and OclExpression have been removed.

— The explicit possibility of building all type instances was removed. Instead
of allInstances the class name can be used directly now.

— The type Character was newly introduced.

6 <«Java>OCL: The Java-variant of OCL

«Javax>OCL has almost the same abstract syntax as standard OCL. However,
variable declarations, method calls, type casts and some other concepts have been
given a different syntactic shape. «Javax»OCL is conform to Java and therefore
is more familiar to Java developers. Some small differences occur due to available
operations and e.g. due to the change of the cast into an infix operation.

For a detailed description of the differences, the previously defined OCL
grammar and the new «Java>OCL grammar are listed on the left resp. right
hand side. Small adaptations are explained below.

0CL < Java>»0CL
{constraint) ::=
context (clContext) context (clContext)
inv { (name)}’ : (exprList) inv { (name)}”’ : (exprList)
| context (opContext) | context {opContext)
{ pre { (name) }" : (exprList) }’ { pre { (name) }" : (exprList) }’
{ post { (name) }" : (exprList) }’ { post { (name) }* : (exprList) }’
| (exprList) | (exprList)
{clContext) ::=
{ (name) : }’ (class) | {class) { (name))’
{(opContext) ::=
{clContext) :: (methodName) { (typeExpr) }" (class) .
((fParamList)’) { : (typeExpr) }’ (methodName) ((fParamList)’)
(fParamList) ::=
(fParam) { , (fParam) }" | (fParam) { , (fParam) }*
fParam) ::=
EvarName) : (typeExpr) | (typeExpr) (varName)

Due to the switched nonterminals in the {clContext) rule, it becomes con-
fusing to allow relabelling of the object in the (opContext). Therefore, this is
omitted in «Java>OCL.

20 Bernhard Rumpe

0CL < Java>0CL

(expr) ::=
(unaryExpr) { (infixOp) (unaryExpr) }* | (unaryExpr) { (infixOp) (unaryExpr) }*
(unaryExpr) ::=

(unaryOp)* (primeExpr) | (unaryOp)* (primeExpr)
{(unaryQp) ::=
— | not | not

(infix0p) ::=

and | or | xor | implies && | || | xor | implies
I=1>1LI>=1<=1<> l=1>1<I>=I<=1l!l=
I+l =1x1/ l+1=1x1/

An additional unary operator has been added that allows type casts. It re-
places the oclAsType operation. New binary operators stem from additional
functionality on basic Java types.

0CL «Java>»0CL
(primeExpr) ::=
(LetExpr) (letExpr)
| (ifExpr) | (ifExpr)
| ((expr)) | ({expr))
| (collectKind) | {collectKind)
{ { {collItem) {1 {collItem) }" }? } { { (collItem) {z (collItem) }" }? }
| (property) - (property) -
| (primeExpr) . (property) (primeExpr) . (property)

{class) . (methodName) ((exprList)’)
rimeExpr collectFeature
P 1%

|
|
|
| (primeExpr) . (collectFeature) |
| (collectExpr)
I
|
|
|

| (type) type)

| (11tera1) (literal)

| self this

| result result

| (primeExpr) .oclAsType
((typeExpr))

| (primeExpr) .oclIsKindOf | (primeExpr) instanceOf (typeExpr)
(({typeExpr))

| (typeifExpr) | (typeifExpr)

| (primeExpr) .oclIsInState | (primeExpr) .isInState ((stateName))
((stateName)) B B

| (primeExpr) .oclIsNew | (primeExpr) .isNew

| {(primeExpr) Qpre | (primeExpr)’

| (primeExpr) [(exprList) | | (primeExpr) [(exprList)

| (primeExpr) [(roleName)] | (primeExpr) [(roleName)

]
|

As there are many OCL specific operations that don’t have “ocl” as prefix,
this was also removed from the above mentioned special operations. A useful
alternative might be to write OCL.isNew (o) instead of o.isNew. As Java gener-
ally allows to use static methods, this possibility was added to «Javax>OCL as

«Java»OCL Based on New Presentation of the OCL-Syntax 21

well. Then a number of OCL specific operations might be provided by a special
”class” called OCL.

The new nonterminal (collectExpr) was added, to allow a syntactic differen-
tiation between method calls and special constructs such as forall.

0CL <« Java»0CL
(letExpr) ::=
let (declList) in (expr) | let (declList) in (expr)
(ifExpr) ::=
if (oxpr) then (expr) else (expr) endif | if (expr) then (expr) else (oxpr)
| (expr) ? (expr) : (expr)
(typeifExpr) ::=
typeif (decl) isof (typeExpr) typeif (decl) instanceof (typeExpr)
then (expr) else (expr) endif then (expr) else (expr)
| (decl) instanceof (typeExpr)
? (expr) : (exp)
(property) ::=
| (attributeName) | (attributeName)
| (methodName) ((exprList)?) | (methodName) ((exprList)?)
| (roleName) - | (roleName) -
(literal) ::=
(char) | (string) | (number) | (bool) (boolean) | (char) | (int)
| (String) |
| (enumTypeName) :: (name) | {class) . (name)

In Java an endif is not used. Therefore, in nested if-expressions it might
become necessary to add brackets. The .7.:. variant for expressions is added
as additional alternative for if-expressions. Java handles enumeration types as
ordinary integer constants. However, a tricky way of denoting these constants
gives a look and feel as if they would be true enumeration types. «Javax>OCL
handles enumeration types in a similar manner.

0CL «Java>»0CL
(collectFeature) ::=
size| isEmpty | ... size| isEmpty |
| includes ({(expr)) | includes ({expr))
| ... | union ((expr)) | ... | union ((expr))

| select ((var) _(expr))_

|

({var) | {expr))

| collect ((var) | {expr))

| forAll ((varList) | {(expr))
| exists ((varList) | {expr))

| iterate_£ (var) ; (decl) 1 (e}?pr) 2 | ...

| rejectz (var)

Special constructs, like forall are rearranged such that their syntax imme-
diately differs from method calls. Previously select was written as

Person.select(p | p.age > 5)

and is now formulated as

select p=Person | p.age > 5

22 Bernhard Rumpe

as well as (select p=Person | p.age > 5). Inversion of the first argument
makes the constructs much more flexible, as it is now possible to use different
expressions for different variables within one quantifier:

exists p=Person, f=p.father | f.age < p.age + 18

0CL < Java>»0CL
(collectExpr) ::=
select (decl) | {(expr)
| reject (decl) | (expr)
| collect (decl) | {expr)
| forAll (declLi_st) | {expr)
| exists (declList) | {expr)
| iterate ((var), (decl)) (expr)
The iterate operator resembles a Java while/for loop as close as possible.
0CL <« Java»0CL
(varList) ::=
(vax) { , (var) }" | (var) {, (var) }°
(var) ::=
(varName) { : (typeExpr) }’ | { (typeExpr) }? (varName)
(declList) ::=
(decl) {, (decl) }" | (decl) {, (decl) }*
(decl) ::=
(var) = (expr) | (var) = (expr)
(exprList) ::=
(expr) {, (expr) }" | (expr) {, (expr) }*
(collltem) ::=
(exp) { - (expm)) | (expr) { - (expr) }?
0CL < Java>»0CL
(class) ::=
{(packageName) :: }* (className) | {{packageName) . }* (className)
{collectKind) ::=
Set | Bag | Sequence | Collection | Set | Bag | Sequence | Collection
(typeExpr) ::=
(collectKind) ({type)) | (type) | (collectKind) ((type)) | (type)
(type) ::=
{(class) | (basicType) | (enumTypeName)| (class) | (basicType)
(basicType) ::=
Integer | ... | int |

Of course Boolean values, digits etc. differ between OCL and Java, but their
detailed definition is omitted here. Further changes appear in the context con-
ditions. For example the type 0clAny should be replaced by Java’s Object.

7 Conclusion

In this article, a number of syntactical and semantic inconsistencies of OCL
have been revealed and corrected. One important change concerns the strict

«Java»OCL Based on New Presentation of the OCL-Syntax 23

separation of logic level and meta-level. Furthermore, the given grammar of
the OCL specification [16] was changed in a manner that achieves an improved
grammar structure, allowing easier readability and a better implementation of
tools. The improved OCL presentation using the restructured grammar is now
more in line with standard programming language grammars. Accordingly, it
allows an easier comparison and translation of OCL to standard programming
languages. Furthermore, this conformance increases readability.

In a last step «Javax>OCL was introduced as a Java-like variant of OCL. It
has (almost) the same abstract syntax as the enhanced version of OCL presented
in this paper, but its syntactic sugar is given in the flavor of Java.

Acknowledgements

This work was partially funded by the Bayerisches Staatsministerium fiir Wis-
senschaft, Forschung und Kunst under the Habilitation-Férderpreis program and
by the Bayerische Forschungsstiftung under the FORSOFT research consortium.
Many thanks go to my colleagues Manfred Broy, Peter Braun, Steve Cook, Hein-
rich Hufimann, Jos Warmer, and in particula Manuela Scherer for fruitful input
and discussion on this topics.

References

1. Aliprand, J., Allen, J., Becker, J., Davis, M., Everson, M., Freytag, A., Jenkins,
J., Ksar, M., McGowan, R., Moore, L., Suignard, M., Whistler, K., The Unicode
Standard, Version 3.0. Addison Wesley Longman Publisher, 2000.

2. Boger, M., Baier, T., Wienberg, F., Eztreme Modeling, In: XP’2000 conference
proceedings, Ed. Michele Marchesi (to appear), Addison-Wesley, 2001.

3. Broy, M., Facchi, C., Grosu, R., Hettler, R., Hussmann, H., Nazareth, D., Re-
gensburger, F., Slotosch, O., Stolen K., The Requirement and Design Specification
Language SPECTRUM. An Informal Introduction. Version 1.0. Part ii . Techni-
cal Report TUM-19312, Technische Universitdt Miinchen. Institut fiir Informatik,
TUM, Miinchen, Germany, May 1993.

4. Church A, A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

5. Cook, S., Kleppe, A., Mitchell, R., Rumpe, B., Warmer, J., Wills, A., The Am-
sterdam Manifesto on OCL, Technical Report, Technische Universitdt Miinchen,
Computer Science, 1999.

6. Cook, S., Daniels, J. Designing Object Systems—Object Oriented Modeling with
Syntropy. Prentice-Hall, 1994.

7. Fitzgerald, J., Larsen, P. G., Modelling Systems: Practical Tools and Techniques
in Software Development. Cambridge University Press, 1998.

8. Gogolla, M., Richters, M., On Constraints and Queries in UML. In M. Schader and
A. Korthaus, editors, Proc. UML’97 Workshop ’The Unified Modeling Language
- Technical Aspects and Applications’, pages 109-121. Physica-Verlag, Heidelberg,
1997.

9. Gosling, J,. Joy, B., Steele, G., The Java Language Specification, Addison-Wesley,
1996.

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Bernhard Rumpe

Hamie, A., Civello, F., Howse, J., Kent, S., Mitchell, R., Reflections on the Ob-
ject Constraint Language. In P. Muller and J. Bézivin, editors, Proc. of UML’98
International Workshop, Mulhouse, France, June 3-4, 1998, pages 137-145.
Hamie, A., Howse, J., Kent S., Interpreting the Object Constraint Language. In
Proceedings of Asia Pacific Conference in Software Engineering. IEEE Press, July
1998.

Harel, D., Rumpe, B., Modeling Languages: Syntaz, Semantics and All That Stuff,
The Weizmann Institute of Science, Rehovot, Israel, MCS00-16, 2000.

Hussmann, H., OCL Compiler. Technische Universitdt Dresden. Available from
http:// www-st.inf.tu-dresden.de/ocl, 2001.

Jacobi, C., Rumpe, B., Hierarchical XP — Improving XP for large scale projects,
In: XP’2000 conference proceedings, Ed. Michele Marchesi (to appear), Addison-
Wesley, 2001.

OCL Parser, Version 0.3. Available from http://www.software.ibm.
com/ad/standards/ocl-download.html, 1999.

OMG. Object Constraint Language Specification. In OMG Unified Modeling
Language Specification, Version 1.3 (June 1999), chapter 7. Available from
http://www.rational.com.

OMG Unified Modeling Language Specification, Version 1.3 (June 1999). Available
from http://www.rational.com.

Richters, M., Gogolla, M., On Formalizing the UML Object Constraint Language
OCL. In Tok-Wang Ling, Sudha Ram, and Mong Li Lee, editors, Proc. 17th Int.
Conf. Conceptual Modeling (ER’98), pages 449-464. Springer, Berlin, LNCS 1507,
1998.

Rumpe, B., Gofer Objekt-System — Imperativ Objektorientierte und Funktionale
Programmierung in einer Sprache, Technical Report, Universitdt Passau, MIP-
9519, 1995.

Warmer, J., Kleppe, A., The Object Constraint Language: Precise Modeling with
UML. Addison Wesley Longman, Reading, Massachusetts, 1999.

Wirth, N., Programming in Modula-2, Springer Verlag, 1982.

