15

REFACTORING OF
PROGRAMS AND
SPECIFICATIONS

Jan Philipps and Bernhard Rumpe
Software € Systems Engineering, Informatik
Technische Universitdt Minchen, Germany
http://www/.informatik.tu-muenchen.de/

ABSTRACT

Refactoring is a new name for a transformational approach to iterative software
development. Originally focused on class diagrams, it is now commonly associ-
ated with object-oriented programming languages like Java. In this article, we
trace some of the conceptual roots and the ideas behind refactoring, and sketch
its relation to other techniques, such as behavioral and structural refinement or
compiler optimization. Based on these observations, we argue that improved
and adapted refactoring techniques will belong to the methodical tool set of
tomorrow’s software engineers.

1 Introduction

Rarely is something invented in a “big bang”. Ideas evolve over time, are
influenced by a number of groups and individuals, are applied to different

1This work was partially funded by the Bayerisches Staatsministerium fiir Wissenschaft,
Forschung und Kunst under the Habilitation-Férderpreis program, by the Bundesministerium
fir Bildung und Forschung within project VISEK, by the Deutsche Fortschungsgemeinschaft
within project INKREA (Br 887/14-1) and by the Validas Model Validation AG.

This paper is based on an earlier version in [PR2001].

282 Chapter 15

domains, are integrated to and re-emerge from a variety of existing techniques.
Finally the time may come to pin down an idea into an abstract form and to
give it an appropriate name.

Computer science is no different. In particular in its discipline of software
engineering, reinvention is common, as this discipline deals with immaterial
artifacts rather than with a given world of observable phenomena.

Refactoring is such a concept. It gained much of its prominence by Martin
Fowler [F1999], based on the programming language Java [GJS1996]. In this
article, we first look at the basic principles of refactoring (Section 2) and give
an outline of related techniques that demonstrate that these basic principles are
present within other techniques as well (Section 3). We then take a —somewhat
subjective— look at a few of these techniques in greater detail (Sections 4
to 6). In Section 7 we point out a few questions that need to be addressed
for refactoring techniques and small-cycle iterative development techniques to
become indispensable in modern software engineering.

2 Refactoring

The concept of refactoring (and also the word “refactoring” itself) was coined
already several years ago (see e.g. [01992]), but its breakthrough came with
the integration of refactoring into the software development process Ertreme
Programming [B1999]. In fact, Fowler himself contributes much of the ideas
of refactoring to Ward Cunningham and Kent Beck. In [F1999, pp. 53f], he
defines refactoring as follows:

Refactoring (noun) A change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing the
observable behavior of the software.

Refactor (verb) To restructure software by applying a series of refactorings
without changing the observable behavior of the software.

Fowler informally applies refactoring techniques to the programming lan-
guage Java and explains the structural changes through exemplifying class di-
agrams. He presents 72 refactorings in his book, among them “extract class”,
“move field /method”, “introduce explaining variable”, “replace delegation with
inheritance”, or “substitute algorithm”.

All refactorings are presented in the same systematic format: The name of
the refactoring, a short summary, a motivation, the mechanics and examples.
The two most important sections are motivation and mechanics. The moti-
vation includes a problem description that allows a programmer to match his
problem to the refactoring and to understand whether the refactoring will solve
this problem. The mechanics section lists a series of concise steps to be applied
when carrying out the refactoring. These steps a presented in a constructive
manner, such that they can immediately be applied.

REFACTORING OF PROGRAMMS AND SPECIFICATIONS 283

Refactoring in the sense of Fowler [F1999] can be characterized by the fol-
lowing statements:

1. Refactoring deals with internal structure of software. Thus, the tech-
niques of refactoring are applied to programming artifacts such as source
code.

2. Refactoring explicitly preserves the observable behavior. This demon-
strates that although refactoring primarily deals with structure, it cannot
disregard behavior.

3. Refactoring aims at improving a given situation according to a given
informally expressed goal; examples for such goals are reduction of de-
velopment costs, or improvement of readability, maintainability, speed of
execution, or memory demands.

4. Refactoring steps are rather small and can systematically be combined to
more powerful sequences allowing to build sophisticated tactics to achieve
ambitious goals.

5. Refactoring is a constructive, rule based technique that starts with a
given situation, a goal and a series of constructive steps, such as “move
a to b, then rename c, then check d” to achieve that goal.

6. Refactoring is applied by software engineers. Refactoring techniques are
designed to be applied manually. However, there are attempts to imple-
ment tool assistence, such as the refactoring browser [BR2001].

7. The correctness of an application of a refactoring rule is in the responsi-
bility of the developer. In the XP process application of refactoring rules
is assisted by tests to increase confidence in the correctness of the rule
application. However, there is (currently) no proof system that allows to
formally prove correctness — neither automatic nor interactively.

As mentioned in this list, refactoring as presented in [F1999] only deals
with behavior preserving transformations. Progress in the evolution of the
system design is defined only informally: The new system should be easier to
understand, to maintain and to extend. The guiding principles behind this
are based on well-known, but informal and sometimes conflicting programming
heuristics.

Not only the applied measure in refactoring is informal, however. The
correctness of the transformation steps in the sense that they preserve system
behavior is not formally justified. In fact, necessary context conditions are all
too often left implicit. For example, Figure 1 shows the well-known refactoring
step that lifts common methods to a superclass (“Pull Up Method”, [F1999,
p. 322]) has the obvious side condition that the methods SubClass1.meth()
and SubClass2.meth() are behaviorally equivalent. This is a rather strong

284 Chapter 15

MW d ass MW d ass
+met h()
Subd ass1 Subd ass2 Subd ass1 Subd ass2
+net h() +net h()

Figure 1: Refactoring Example (“Pull Up Method”)

requirement, as verification of object-oriented programs is highly nontrivial. A
sufficient, but very strong criterion is obviously syntactical equality which at
least can help to remove the redundancy that results from cut-and-paste of
source code.

In the context of Extreme Programming, this lack of formality is alleviated
by a rigorous testing discipline. In a pragmatic sense, two methods can be
regarded as equivalent, if they pass the same (rather complete) set of test
cases.

Fortunately, not all refactorings need to be justified by formal reason-
ing: For example, if just SubClass1.meth() is moved to the superclass while
SubClass2.meth () remains in its subclass, the proof obligation can be omitted,
because overriding preserves the previous behavior.

3 Transformational Approaches

In the last section, we noted that refactoring steps improve the system struc-
ture under an informally given metric, while the observational behavior of the
system remains unchanged. Obviously, this is only true for appropriate and
usually rather coarse notions of observable behavior. If execution time is con-
sidered part of the observable behavior of a system —as is the case for real-time
process control systems—, a refactoring step that extends execution time can
be regarded as a critical change in behavior.

The notion of observable behavior allows us to change a detailed description
of a system—even at the level of code—, while the systems remains unchanged
at an abstract level.

Since there is some variability in the choice of behavior notion and goal met-
ric, it seems reasonable to relax the requirement of observational equivalence
somewhat, and to allow or even enforce certain “improvements” in behavior
as well as optimization of non-functional goals. This generalization puts refac-

REFACTORING OF PROGRAMMS AND SPECIFICATIONS 285

toring close to the well-known concept of refinement, as pioneered by Dijkstra
[D1971], Wirth [W1971] and Bauer [BW1982].

Although many approaches use the concept of behavior preserving or refin-
ing transformations, the first approaches to explicitly make use of behavioral
equivalence and refinement were algebraic specification techniques.

For example, OBJ [FGJM1985] employs hidden sorts that allowed to explic-
itly distinguish between internal and externally visible behavior. In [G1999],
Goguen describes this approach and its implications to the preservation of ex-
ternally visible behavior from a current perspective. Most important, this and
other approaches (e.g., Spectrum [BFGT1993]) show,that it is possible to ex-
plicitly define “externally visible behavior” and base rigorous proof techniques
on this definition. The standard refactoring approach, however, only uses an
informal and implicit notion of behavior defined through its tests. In the sense
of Goguen these tests are “experiments” on the system, which are possible
since the probed functionality is externally visible. In practice, however, the
tests defined for a system are usually based on different visibility assumptions.
Method tests are more fine-grained than unit tests and can therefore see more
details. This becomes apparent, when a (local) method is refactored and its
method tests are not appropriate anymore. External tests instead still apply.

Let us now give a few examples for refinement techniques from different
computer science areas. We do not attempt to give a complete overview, but
mainly try to show variants of applications of this principle, where refactoring
is only one of the most recent and prominent.

Behavioral refinement of state machines asshown in [R1996, S1998] and
also as an example in [R1998] has a large variety of variants. State
machines (in various incarnations such as Statecharts [H1987], I/O Au-
tomata [LT1989], w-automata, Mealy and Moore machines and many oth-
ers) describe component or system behavior rather than system structure.
Manipulation of statemachines therefore directly affects behavior, and the
preservation of behavioral equivalence normally would be too restrictive.
Instead, the idea is to add details to derive concrete implementations
from abstractly specified behavior.

In Section 6, we will give a short overview over such state machine trans-
formations.

Refinement of dataflow architectures as discussed in [PR1997, PR1999]
describes a number of transformational rules on a software architectural
language that is suited for distributed systems with asynchronous com-
munication. Some of the transformations just improve the structure of a
system, while others also affect the behavior of the system at its interfaces.
A clearly defined notion of observable behavior allows that approach to
precisely define what preservation and refinement of behavior means.

286 Chapter 15

Section 5 discusses this approach in more detail, and gives an example of
such a set of transformations.

Refactoring of Class Diagrams by William Opdyke [01992] showes how
to migrate functionality and attributes between classes as well as how to
merge and split classes on a class diagram notation (essentially a subset
of today’s UML [G2001]). The goal is to improve the design of the system
for further maintenance and extension.

Refinement Calculus [BvW1998] is a framework for the stepwise derivation
of imperative programs from a specification, based on early work of Dijk-
stra [D1971] and Wirth [W1971]. As a verification methodology, refine-
ment calculus is quite successful; as a software development methodology,
it has its weak points, as pointed out by Michael Jackson [J1995]: “You
must already have solved the problem before the solution process is be-
gun”.

Computer-Aided Intuition-Guided Programming (CIP) was a project

led by F. L. Bauer at the Technische Universitdt Miinchen, one of the
organizers of the famous conference on Software Engineering 1968 in
Garmisch, near Munich.
The project developed a wide-range language [BBB*1985] that included
several sublanguages for specification, functional, applicative, imperative
and assembler programming. Its main purpose was to allow interactive
transformation of an abstract specification into an efficient and executable
program. There are steps involved that strongly remind to refactoring,
but they do have a very precise and formal underpinning.

In Section 4, we will show a a number of CIP-transformations on program
structure.

Common to all these approaches is that —like refactoring— they embody
conscious design decisions. While in principle refactorings can be automated,
for instance in program transformation systems, such automatization has so
far failed to enter mainstream programming practice.

In compiler design, however, automatic refactorings are ubiquitous: Al-
ready early FORTRAN compilers offered optimizations based on rewritings of
the program, and elaborate optimization phases are state-of-the-art in com-
piler technology for imperative programming languages. They preserve the
functional behavior, while improving execution time and memory usage. Some
optimizations try to reduce branching or to optimize register use; others apply
on the source code level: Algebraic transformations based on solid mathemat-
ical semantics of a programming language allow to transform expressions such
asa+b—atob, ax0to0 etc. Transformation steps are at the core of mod-
ern compilers for functional programming languages [JS1998]. Tail-recursion

REFACTORING OF PROGRAMMS AND SPECIFICATIONS 287

elimination, where recursion can be translated into iteration, is a common op-
timization of functional programming language compilers; it is also one of the
transformations known from the CIP project (see [BW1982]).

Hardware designs can also be optimized: Leiserson and Saxe [LS1991]
present an approach to retime a circuit at the register transfer level so that
either the clock period or the number of registers is reduced; this increases the
speed of the circuit or reduces its chip size, while the logical behavior remains
unchanged.

Transformations that preserve behavior or correctness are by no means an
original invention of computer science. Arguably the most ambitious “refactor-
ing” so far undertaken is the unified presentation of mathematics of the group
of mathematicians known as Nicolas Bourbaki [D1992].

Mathematicians use refactoring-like techniques also on a smaller scale: Given
a proof for a theorem, it is always worth searching for a more beautiful or
shorter proof—if only for didactic reasons. The application of mathematical
calculi can also be regarded as refactoring. Solving an equation in order to find
the value of a variable is done by stepwise transformations that preserve the
value of the variable until finally the equation has the form a = ... explicitly
showing the value.

4 The Munich Project CIP

We now briefly sketch the Computer-Aided Intuition-Guided Programming
project (CIP) and relate its ideas from over 20 years ago to modern concepts
and languages. Some of the project’s main results are published in [BBB*1985]
and are strongly connected to [BW1982].

The central theme of the CIP project was to develop programs by a se-
ries of small, well understood transformations. Beginning with an abstract
specification written in an algebraic style, the transformation steps lead to an
executable and efficient program. A precise underlying semantics ensures the
correctness of the applied steps.

The CIP project was based on its own language. The applicative and im-
perative parts where inspired by languages from the Algol family. Object-
orientation was just about to emerge at that time and therefore was not di-
rectly incorporated —it only showed up in form of “devices” that couple the
data and module concept. In particular, a module concept (influenced by Par-
nas, [P1972]) and strong concepts for the definition of abstract datatypes are
present.

Beyond the programming and specification language, the project used a
rule-based language to describe transformations. A transformation is specified
as an abstract schema, using so called schema variables that replace parts of the
target language. Here is an example for a simple rule to eliminate a conditional
statement:

288 Chapter 15

if F then A else B
A

|[Boolean expression E is a tautology

This rule uses scheme variables £, A and B to identify parts of the ex-
pression to be transformed. The side condition of the rule states that the
transformation is only valid if the Boolean expression E is equivalent to “true”.
This is a typical rule that is close in spirit to the refactoring rules of [F1999]. In
a similar vein, CIP provides rules for algebraic optimization, control structure
manipulation, folding and unfolding of functions, and for the change of data
structures.

Algebraic optimization mainly occurs with expressions, or folds and unfolds
parts of an expression. An example for a simple algebraic optimization is shown
in Figure 2(a). With this rule, 3+3 can be replaced by 2*3. However, it can not
be applied to (i++)+(i++), as this expression is not free of side effects. Neither
can it be applied to Math.random()+Math.random(), as this expression is not
deterministic. This example also shows that many of these rules apply in both
directions.

Figure 2(b) shows an example of control structure manipulation. It deals
with the reordering of program statements. There are many more sophisticated
rules, in particular rules to treat branches, loops, or rules that fold statement
sequences into procedures; these rules also deal with result assignment, side
effects, and other peculiarities.

E+FE Expression FE is side-effect
2F free and deterministic

(a)

Vi=FES§ Variable V unused in statement S;
S$;V:=E expression F is side-effect free

(b)

Figure 2: CIP Transformation Rules

The rules shown so far deal with structural or algebraic manipulations that
preserve observable behavior. CIP also provides rules for refining behavior.
Such a transformation adds details to an abstract specification of a program,
e.g. describing not only the desired outcome, but also how to calculate the
result. This however is only possible if the artifact to be manipulated is abstract
in the sense that it allows several different behaviors and implementations.

REFACTORING OF PROGRAMMS AND SPECIFICATIONS 289

For this purpose CIP uses an abstract specification sublanguage that allows
declarative formulation of program properties. Interestingly, this sublanguage
has some conceptual similarities to OCL [WK1998].

An example of the use of behavior refinement is a specification that describes
that each object in a given set shall receive a method call. Since sets usually are
unordered while the effect of the specified operation may depend on this order,
there is some natural underspecification. We can apply CIP transformations to
replace such a set by an appropriate implementation (e.g. SortedSet in Java)
that allows us to determine the order. Therefore we transform the previously
underspecified definition into an executable program.

When looking at the characteristics of CIP transformations, we find —apart
from the different programming language— some differences to the refactoring
approach:

e Rules are used both for refactoring and for refinement.

e Rules are precisely specified and have explicit context conditions that fit
to the underlying semantics.

e CIP rules are used not only for improving existing code, but for deriving
new code from abstract specifications.

This makes an important difference in methodical use, as CIP transforma-
tions are designed to constructively assist iterative step-by-step development.
To further improve assistance of iterative development, the small transforma-
tional steps can be combined into powerful tactics. Such a tactics can be used
for algebraic optimizations, repetition of a series of steps, or can even be un-
derstood as the explicit manifestation of a design pattern in procedural form.
In this respect CIP has a more fine grained iterative development process than
even XP.

5 System Structure Refactorings

Transformational approaches are not limited to programming languages. In
this section, we demonstrate distributed systems can be refactored at the ar-
chitectural level of distributed systems.

We model the distributed system as a network of component that commu-
nicate asynchronously over buffered unidirectional channels. The message ex-
change between components of a distributed system is represented by message
streams, finite or infinite sequence of data. Each message stream represents
the communication history over a channel between two components.

The behavior of a system component is then modeled by a relation between
its input and output communication histories. We impose a number of re-
strictions that ensure that the component behavior is causally correct, i.e., the
component output may not depend on future component input (see [BS2001]
for details).

290 Chapter 15

Based on streams and I/O history relations, a precise notion of an architec-
ture for distributed message-passing systems can be defined. A system consists
of input and output channels, a set of components and a connection structure
that satisfies the following restrictions: Components have no common output
channels, each component input is either a system input or a component output
(possibly of the same component), and each system output emerges as an out-
put of one of its components (Figure 3). Under these assumptions, the behavior
of a system is precisely defined by the intersection of the component I/O rela-
tions; hiding of internal channels is accomplished by existential quantification.
A system where all internal channels are hidden can be itself regarded as a com-
ponent. Therefore, systems can be composed hierarchically. This approach to
the description of complex system structures has been elaborated from a more
mathematical point of view in [BS2001, BDD1993], but it is useful also for
the description of actual software architecture [K2002].

P

L — €2

i

Figure 3: Message passing system

Since component and system behavior are described as relations of input
and output histories, there is a natural refinement concept based on the be-
havior subset relation. Elaborate refinement rules for behavioral and interface
refinement can be defined [BS2001].

These refinement rules are based on an abstract syntax of component speci-
fications and composition operators. For practical application in an incremental
development process, refactoring rules that are based directly on the graphical
representation of a system architecture are more useful. In [PR1997, PR1999],
we introduced such a set of rules, that allows a system designer to

e introduce and remove system components,
e introduce and remove component input channels,

e introduce and remove component output channels,

e refine component behavior, possibly under consideration of an invariance
predicate that characterizes the behavior of the other system components,
and to

e replace a component by a subsystem and vice versa.

REFACTORING OF PROGRAMMS AND SPECIFICATIONS 291

Each of these rules preserve the restrictions on the system architecture
mentioned above. Some of the preconditions of these rules are syntactical
(“the output channels of a component to be removed may not be used by other
components”), some of them refer to system behavior invariants.

To show the flavor of the rules, the following rule is used to introduce a new
component output channel p for a component C of a distributed system:

_Zp C L» .
Channel p unused in system
Behavior of C' on (i, 0) is identical to
[[0 that of C.
¢ L
p

Note that the behavior on the new output channel p can be arbitrary; this in-
troduces underspecification which can later be removed by behavior refinement,
for instance using this rule:

7 0
— C’ ——

|[Provided input i is valid,
0

all output o of new component C'
might have already occurred for C

D — Cl —

Here, a system invariant is used as a predicate over streams that character-
izes the valid input histories of the system. [PR1999] contains a more formal
presentation of this rule and a justification of its correctness.

Figure 4 shows the transformation of a simple data collection system. The
component PRE gathers data, preprocesses it, and sends it to a remote database
RDB. To reduce the required transmission bandwidth, in a new version of the
system only the difference between the current data to the previous data shall
be transmitted. The six structure diagrams show the necessary transformation
steps: Introduction of encoding and decoding components (ENC and DEC),
connection of the new component to the existing system, elimination of the
previous connection between PRE and RDB, and the folding of PRE and ENC
as well as DEC and RDB to new components.

Most of these steps are purely syntactical; only the step from Figure 4(d)
to Fig. 4(e) requires some formal reasoning to show that the encoded data is
essentially the same as the unencoded data (see [PR1999] for a formal proof,
it is based on the behavior refinement rule presented above).

The example also shows how to assemble the transformation rules to more
complex domain specific transformation patterns. There are only very weak
assumptions about the behavior of PRE and RDB, which means that this
example can be used without further proof obligation for similar situations.

The architectural transformation rules are similar to the CIP transformation
rules in that they encompass not only refactoring but also refinement; they are

292 Chapter 15

() (d)

Figure 4: System Structure Transformation

also based on a precise semantics so that the rules can be given explicit and
precise context conditions.

Architecture refinement is by no means limited to software systems, but
may be applied to business models or organizational models as well; [RT1998]
shows an example for the transformation of business processes.

6 State Machine Refactorings

During the last years, it has become common practice to describe the behav-
ior of system components by state machines, which are described graphically
by state transition diagrams [B1997, R1996] or, extended with hierarchy and
parallelism, by Statecharts [H1987, G2001].

For components in distributed systems, state machines can be given a formal
semantics based on streams that is compatible with the architecture model of
the previous section [R1996, B1997].

REFACTORING OF PROGRAMMS AND SPECIFICATIONS 293

This semantics can be used to give a set of refactoring and refinement rules
that, among some other transformations, allows us

e to add new states and to remove unreachable states,
e to add new input messages to a component,

e to remove transitions, provided there are alternative transitions for the
same input,

e to add transitions, provided there are no existing transitions for the same
input.

As an example, below is the component interface and a —very much simplified—
state transition diagram for the remote data base of the example in Figure 4:

i = (k,d)/M := M[k — d]

P /M =2

Here, M is assumed to be the data base; it is initially empty. New data
(k, d) arrives as pairs of data and key on the input channel 7 and is stored in
M by updating M. Queries arriving on the request channel r are answered by
looking up the corresponding data and forwarding it over o.

The state machine refinement rules can be used to capture the step from
Figure 4(c) to Figure 4(d) in the example, where a new input channel is added
to the data base:

o The state machine’s input signature is extended from { i, } to { ¢, r, i }
for the new input channel which carries the data from the decoder. The
justification of this step is that while the behavior of the machine for
input on i’ is undefined, its behavior for input on r and i is identical to
the original behavior.

e In the next step, the behavior for input on i’ is defined. For the simple
example here, input on i’ is treated exactly as input on 4: The decoding
of the data occurs already in the separate component DEC.

i = (k, d)/M := M[k — d]

/M=o i = (k, d)/M = Mk — d]

294 Chapter 15

Note that these two transformation steps are likely to be used together
in practice: While the first step introduces internal underspecification in the
system (because the behavior for input on he new channel is undefined), the
second step immediately restricts or even removes it again, thus making the
new channel “useful”.

The step from Figure 4(d) to Figure 4(e) removes the old input channel %
of the data base. While this step should seemingly be symmetric, it is much
more ambitious. In general, input channels cannot be removed without deeply
changing component behavior. In this case, however, we can show as a system
invariant that the same data arrives on channels 7 and ¢’ (for instance, using the
verification techniques for I/O history specifications of [BP2000]); removing the
transition that reads from 7 therefore leaves the data base behavior unchanged,
and it is safe to remove the input channel ¢ altogether.

For a more formal discussion of the state machine transformation rules, see
[R1996]; a similar rule has been developed for a Statecharts dialect [S1998].

7 Conclusion

In the previous sections, we have presented various approaches of system trans-
formation that are quite similar to refactoring techniques in the sense of Fowler.
Common to these approaches is that the artifact or pieces of the artifact that
is being developed are changed in small and systematic steps, where each step
improves the system according to a—not necessarily formalized—metric, such
as maintainability, reduction of underspecification, speed, memory consump-
tion or possibly even simply esthetics—a concept which is difficult to formalize
but of practical relevance, for instance for didactic reasons.

Refactoring steps can also be based on mathematical models. Each refactor-
ing step can then be given precise context conditions that have to be justified in
order for the step to be applicable. These mathematical approaches generalize
to refinement transformations, where behavior descriptions can be specialized
during the development process. Of course refinement is not limited to pro-
gramming languages or the pipe and filter architectures used in this paper,
but they can be applied to a variety of modeling languages and styles, such as
interpreters, communicating systems or event based systems [SG1996].

The use of a series of small and systematic transformations during the soft-
ware development is independent of specific process models; it fits both into the
waterfall and the spiral models of software engineering [B1994]. But it works
particularly well for short-cycled, iterative methods. It is therefore no coinci-
dence that refactoring became prominent together with Extreme Programming
[B1999], where development cycles are kept as short as possible.

The experience with transformation rules for structure and state transition
diagrams lead us to believe that one of the core concepts of Extreme Pro-
gramming —systematic and small steps to improve the final result for certain

REFERENCES 295

goals— can be applied for a large number of modeling techniques beyond mere
programming languages. An adaption of the XP and refactoring principles to
high-level modeling techniques, coupled with code generation from models can
extend the reach of small-cycle incremental development approaches.

Unfortunately, for the currently emerging standard UML [G2001] there is
still a deficit of accepted transformation techniques; perhaps first the model-
ing and refactoring power of UML tools has to be improved. With emerging
improved tool assistance and better understanding of refactoring techniques of
various modeling and programming languages (not only UML), development
cycles will become even shorter and systems redesign more flexible.

Another deficit of the UML is the inadequate mathematical foundation;
there is no commonly accepted formalization that could be used to estab-
lish the notion of behavioral equivalence that is at the core of refactoring.
It might therefore seem worthwhile to more closely follow XP and to start with
an indirect equivalence notion based on test case specifications; current work
on model-based test sequence generation techniques (e.g. [PL2001, PLP2001])
could offer some machine assistance in this respect.

References

[B1994] B.W. Boehm. A spiral model of software development and enhance-
ment. Software Engineering Notes, 11(4), 1994.

[B1997] M. Broy. The specification of system components by state transition

diagrams. Technical Report TUM-19729, Institut fir Informatik, TU
Miinchen, 1997.

[B1999] K. Beck. Eztreme Programming Fxzplained: Embrace Change. Addison-
Wesley, 1999.

[BBB*1985] F.L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger,
R. Gnatz, E. Hangel, W. Hesse, B. Krieg-Briickner, A. Laut,
T. Matzner, B. Maller, F. Nickl, H. Partsch, P. Pepper, K. Samelson,
M. Wirsing, and H. Wossner. The Munich Project CIP, Vol 1: The
Wide Spectrum Language CIP-L. LNCS 183. Springer-Verlag, 1985.

[BDD'1993] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T.F. Gritzner,
and R. Weber. The Design of Distributed Systems - An Intro-
duction to FOCUS. Technical Report SFB 342/2/92 A, Tech-
nische Universitdt Miinchen, 1993. http://www4.informatik.tu-
muenchen.de/reports/ TUM-19202.ps.gz.

[BFG11993] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hufmann, D. Nazareth,
F. Regensburger, O. Slotosch, and K. Stglen. The Requirement and
Design Specification Language SPECTRUM, An Informal Introduction,
Version 1.0, Part 1. Technical Report TUM-19312, Technische Univer-
sitdt Miinchen, 1993.

[BP2000] M. Breitling and J. Philipps. Step by step to histories. In AMAST
2000, LNCS 1816, 2000.

296

[BR2001]
[BS2001]

[BvW1998]
[BW1982]

[D1971]
[D1992]
[F1999]

[FGIM1985]

[G1999]

[G2001]
[GIS1996]
[H1987]
[71995]

[7S1998]

[K2002]
[LS1991]
[LT1989]
[01992]

[P1972]

REFERENCES

J. Brant and D. Roberts. Refactoring browser tool. http://st-www.
cs.uiuc.edu/"brant, 2001.

M. Broy and K. Stglen. Specification and Development of Interactive
Systems. Springer, 2001.

R.-J. Back and J. von Wright. Refinement Calculus. Springer, 1998.

F. L. Bauer and H. Wossner. Algorithmic Language and Program De-
velopment. Springer, 1982.

E.W. Dijkstra. Notes on structured programming. In C.A.R. Hoare
O. Dahl, E.W. Dijkstra, editor, Structured Programming. Academic
Press, 1971.

J. Dieudonne. Mathematics - The Music of Reason. Springer, 1992.

M. Fowler. Refactoring. Improving the Design of Ezisting Code.
Addison-Wesley, 1999.

K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles
of OBJ2. In B. Reid, editor, Proceedings of 12th ACM Symposium
on Principles of Programming Languages, Association for Computing
Machinery, pages 52—-66, 1985.

J. Goguen. Hidden algebra for software engineering. In Conference on
Discrete Mathematics and Theoretical Computer Science, volume 21 of
Australian Computer Science Communications, pages 35-59. Springer,
1999.

UML Group. Unified Modeling Language. Version 1.4, Object Man-
agement Group (OMG), www.omg.org, 2001.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison-Wesley, 1996.

D. Harel. Statecharts: a visual formalism for complex systems. Science
of Computer Programming, 8:231-274, 1987.

M. Jackson. Software Requirements and Specifications - a lezicon of
practice, principles and prejudices. Addison Wesley, 1995.

S.L. Peyton Jones and A. Santos. A transformation-based optimiser for
Haskell. Science of Computer Programming, 32(1-3):3-47, September
1998.

H. Kilov. Business Models: A Guide for Business and IT. Prentice
Hall, 2002.

C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. Algo-
rithmica, 6(1):5-35, August 1991.

N. A. Lynch and M. R. Tuttle. An introduction to input/output au-
tomata. CWI Quarterly, 3(2):219-246, 1989.

W. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, 1992.

D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15:1053-1058, 1972.

REFERENCES 297

[PL2001]

[PLP2001]

[PR1997]
[PR1999]

[PR2001]

[R1996]

[R1998]

[RT1998]

[S1998]

[SG1996]
[W1971]

[WK1998]

A. Pretschner and H. Létzbeyer. Model Based Testing with Constraint
Logic Programming: First Results and Challenges. In 2nd ICSE Intl.
Workshop on Automated Program Analysis, Testing, and Verification
(WAPATV’01), 2001.

A. Pretschner, H. Lotzbeyer, and J. Philipps. Model Based Testing in
Evolutionary Software Development. In Proc. 11th IEEE Intl. Work-
shop on Rapid System Prototyping (RSP’01), 2001.

J. Philipps and B. Rumpe. Refinement of information flow architectures.
In M. Hinchey, editor, ICFEM’97. IEEE CS Press, 1997.

J. Philipps and B. Rumpe. Refinement of pipe and filter architectures.
In FM’99, LNCS 1708, pages 96-115, 1999.

J. Philipps and B. Rumpe. Roots of Refactoring. In K. Baclavski and
H. Kilov, editors, Tenth OOPSLA Workshop on Behavioral Semantics.
Tampa Bay, Florida, USA. Northeastern University, 2001.

B. Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. PhD thesis, Technische Universitdt Miinchen, 1996.

B. Rumpe. A Note on Semantics (with an Emphasis on UML). In
B. Rumpe H. Kilov, editor, Second ECOOP Workshop on Precise Be-
havioral Semantics, 19813. Technische Universitdt Miinchen, June 1998.

B. Rumpe and V. Thurner. Refining Business Processes. In Ian Sim-
monds H. Kilov, B. Rumpe, editor, Seventh OOPSLA Workshop on
Precise Behavioral Semantics, 19820. Technische Universitdt Miinchen,
June 1998.

P. Scholz. Design of Reactive Systems and their Distributed Implemen-
tation with Statecharts. PhD thesis, Technische Universitdt Miinchen,
1998.

M. Shaw and D. Garlan. Software Architecture. Prentice Hall, 1996.

N. Wirth. Program development by stepwise refinement. Communica-
tions of the ACM, 14:221-227, 1971.

J. Warmer and A. Kleppe. The Object Constraint Language. Addison
Wesley, Reading, Mass., 1998.

